November 15, 2018

Mr. Brian Yolitz
Associate Vice Chancellor for Facilities
Minnesota State Colleges and Universities
30 East 7th Street, Suite 350
St. Paul, MN 55401

RE: Predesign Submittal for the Student Support and Success Modernization at Itasca Community College

Dear Associate Vice Chancellor Yolitz:

In accordance with Minnesota Statutes §16 B.335, Subdivision 3, enclosed you will find the Predesign submittal document for the Student Support and Success Modernization of Davies and Backes Halls and demolition of the deficient Administration building.

We are very excited to present this report and our project request because it has the potential to substantially improve the experience for all college students, increase retention, and assist students in achieving their educational goals.

It is a student-centered project that will update and co-locate student and academic support services with administrative services in a renewed student service center in Backes Hall. Reorganization of key functions into a single "one stop" model will simplify the academic support process and enable staff, faculty, and administration to meaningfully reach students from their first arrival on campus through the completion of their goals at Itasca Community College.

The Student Support and Success Modernization is the sister project to our $5.4M Student Center initiative currently underway with community and private investment through the ICC Foundation. The sweep of that initiative enables and presents the improvements of Davies Hall, the key first step in the program improvements in this request.

Reinvestment in campus infrastructure will modernize our facilities while supporting current and emerging regional NHED initiatives, along with achieving ADA enhancements, Life Safety upgrades, and reduced backlog.

There are several components which are integrated as whole in the Student Support and Success Modernization. These consist of the remodeling of 47,810 SF in the Davies and Backes buildings, demolishing the Administration building (54,000 SF), and developing a clear and welcoming arrival and entry experience to our campus. This proposal seeks full funding for the project in the amount of $10.05M.

Sincerely,

President Bill Maki
November 15, 2018

President William Maki
Northeast Higher Education District
1001 Chestnut Street West
Virginia, MN 55792

Dear President Maki,

We are pleased to submit to you the final predesign for the Student Support and Success Modernization. The attached document has been prepared in accordance with the Minnesota State Predesign Guidelines and in collaboration with you, your staff, and the Steering Committee.

The scope of our work for this project has been to provide professional planning services to confirm facility needs and establish a strong rationale for your Capital Bonding Request.

We would like to thank you and the faculty and staff who participated in a collaborative effort to define the project scope, requirements, budget and schedule. We look forward to seeing this very important project move forward.

Sincerely,

Ann Voda, AIA, CID, LEED AP BD+C
Principal

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision, and that I am a duly Licensed Architect under the Laws of the State of Minnesota.

ANN VODA AIA, CID, LEED AP BD+C

Signature: ____________________________
Date: November 15, 2018

Minnesota License # 15699
TABLE OF CONTENTS

1. Executive Summary: ... 6 - 9
 a. Summary Statement Goals of project
 b. Scope
 c. Cost
 d. Schedule and Phasing

2. Project Background .. 10 - 41
 a. CFP and Campus Context
 b. Existing Conditions:
 Existing Site
 Existing buildings
 Existing Utilization
 Civil
 Structural
 Mechanical, Electrical and Technology

3. Project Description ... 42 - 59
 a. Programs and Goals
 b. Site Design
 c. Building Design

4. B3 and SB2030 Energy and Sustainability 60 - 63

5. Financial Information .. 64 - 69
 a. Construction Costs
 b. Total Project Costs

6. Schedule and Phasing ... 70 - 71

7. Appendices .. 72 - 129
 Meeting and phone notes
 Options considered but not pursued
STEERING COMMITTEE

Itasca Community and Technical College

- Bart Johnson, Provost
- Chad Haadvedt, IT and Facilities Manager
- Becky Bourquin, Student Services
- Jane Chamberlain, Business Services
- Cricket Guyer, Administration
- Renee Cole, Nursing Faculty
- Lynette How, Nursing Faculty
- Ann Vidovic, Student Support Services
- Darla Nelson, Student Services
- Justin Lamppa, Athletics
- Jill Murray Power, Operation Program
- Faith McBride, Bookstore
- Richard Kangas, Dean of Student Services
- Susan Lynch, ICC Foundation
- Mic Reason, Art Faculty

Consultant Team

Bentz / Thompson / Rietow, Inc
- Ann Voda, AIA, CID, LEED AP BD+C
- Randy Moe, AIA, CID, LEED AP
- Jessica Kraft, AIA
- Warren De la Victoria, Assoc. AIA

Damon Farber Associates, Inc
- Joan Macleod, ASLA, LEED AP, PLA
- Lance Schuer, PLA, LEED AP

Obermiller Nelson Engineering
- Jeremiah Christianson, P.E., Legacy LEED AP
- Andrew Bartsch, P.E.

Meyer Borgman Johnson
- Paul Johnson, P.E.

Pierce Pini & Associates
- Pat Sveum, P.E.

Loeffler Consultants
- Talon DeWitz
- Jonathan Murray, LEED AP
SUMMARY PROJECT DESCRIPTION

A. Campus and Project Description:

Aptly named, the Student Support and Success Modernization project has the potential to improve the experience for all college students, increase retention, and assist students in achieving their educational and life goals.

It is a student-centered project that will update and co-locate student and academic support services with administrative services in a renewed student service center in Backes Hall. Reorganization of key functions into a single “one stop” model will simplify the academic support process and enable staff, faculty, and administration to meaningfully reach students from their first arrival on campus through the completion of their goals at Itasca Community College. Currently, the student service experience is fragmented by the physical construction of the buildings. There are several components which are integrated in the Student Support and Success Modernization. These consist of the remodeling of academic and student spaces in Davies and Backes Halls, demolishing the Administration building, and developing a much needed clear and welcoming arrival and entry experience to the campus for students and community partners.

The impetus and uniting theme for the Student Support and Success Modernization project is partially driven by the $4.9 million dollar investment being made by the community and private investment through the ICC Foundation to create a new Student Center on campus. The Student Center includes renovation of outdated academic space in Davies Hall which in turn requires updates for more effective academic spaces that support educational programming, including practical nursing. Schematic designs for the Student Center also include renovations in Davies Hall, to ensure that both projects will be in synchronization and compatible with one another.

The open site created by the demolition of the Administration building will be developed into a new campus arrival and entrance plaza, which will knit the site and campus open spaces into a much needed arrival point for students and community partners in Backes Hall. The demolition of the Administration building reduces campus square footage and removes a backlog of over $600,000 in much needed building repairs.

Both Backes and Davies Halls will be modernized by replacing HVAC systems to be more efficient, updating distance learning technology to improve partnering with the district, and adding fire suppression and other life safety features. Both will also include ADA compliant restrooms and new elevators will insure accessibility for multiple levels.

This complete series of campus improvements will enliven and modernize the academic and campus experience for all students, allow staff and faculty to more effectively connect to students and each other, and create a welcoming face to the community, alumni and all visitors to the college.
B. Scope Summary
The early impetus for the Student Support and Success Modernization project will be the implementation of another project on campus, the Student Center renovation. That community funded project will set the steps in motion for the Student Support and Success Modernization project to relocate program areas into Davies and out of Backes Hall and making long needed improvements to both buildings. In particular, Davies Hall academic program areas will be updated and right-sized for the future. The resulting consolidation of Student Services and Administration functions into Backes Hall will allow the Administration building to be removed.

Davies Hall:

a. Nursing programs and Art program will be updated and right-sized for the future Rightsizing to accommodate academic programming needs
b. Provide modern, accessible restrooms
c. Address accessibility of the building by adding an elevator, and taking inaccessible half levels out of service.
d. Renovate the HVAC system of the building including all system components
e. Provide fire protections systems

Backes Hall:

a. Allocate space for Student Services functions, etc.
b. Create an entry point for visitors and students to orient them to campus services
c. Rightsizing to accommodate some/all functions from demolished Administration Building
d. Provide modern, accessible restrooms
e. Remove ramps and add an elevator
f. Provide fire protection system and upgrade mechanical and electrical systems

Site:

a. Creating a strong campus arrival point and welcoming entry sequence at Backes Hall
b. New plaza, sidewalk, and landscaping

Administration Building:

a. Demolish this building and relocate its functions to Backes
b. Integrate the cleared site into outdoor campus amenities
c. The underutilized area can serve as swing space during construction

Systems, life safety, and energy efficiency Improvements

a. Replace lighting with LED.
b. Most pumps and motors are fixed frequency drives, and a bulk of HVAC controls are still pneumatic driven. See section 2 for a discussion of mechanical and electrical considerations
c. This project will conform to B3 and SB 2030 mandates and considerations
C. COST SUMMARY

Administration (5,400 SF)
- Architectural: $108,000
- Mechanical: $0
- Subtotal: $108,000
- Total: $151,496

Backes (19,310 SF)
- Architectural: $1,467,500
- Mechanical: $746,800
- Subtotal: $2,214,300
- Total: $3,106,085

Davies (28,500 SF)
- Architectural: $1,337,825
- Mechanical: $1,090,000
- Subtotal: $2,427,825
- Total: $3,405,605

Site
- Subtotal: $350,000
- Total: $490,959

Construction Totals include permits, bonds, design & construction contingencies, general conditions, etc.

- Construction Total: $7,154,145
- 2020 Project Total: $10,051,000
D. SCHEDULE AND PHASING SUMMARY

Student Success and Support Modernization

<table>
<thead>
<tr>
<th>Activity</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds Available</td>
<td>July 2020</td>
</tr>
<tr>
<td>RFP/ A/E firm selected</td>
<td>July-August 2020</td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>September-November 2020</td>
</tr>
<tr>
<td>DD</td>
<td>December 2020-January 2021</td>
</tr>
<tr>
<td>CD</td>
<td>February-March 2021</td>
</tr>
<tr>
<td>Bid</td>
<td>April 2021</td>
</tr>
<tr>
<td>Construction</td>
<td>May 2021-April 2022</td>
</tr>
<tr>
<td>Move in</td>
<td>Summer 2022</td>
</tr>
</tbody>
</table>

All building and site work completed for Fall 2022 Semester

Backes to remain occupied during construction

Davies temporary locations for Nursing and Art in Administration or Dailey; Admin building also to be used as swing space for Backes.

Student Center (Work by others completed prior to Pre- Design project)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predesign Complete</td>
<td>Fall/Winter 2018</td>
</tr>
<tr>
<td>A/E firm selected</td>
<td>December 2018</td>
</tr>
<tr>
<td>Design/ Bid</td>
<td>January-September 2019</td>
</tr>
<tr>
<td>Construction</td>
<td>October 2019-June 2020</td>
</tr>
</tbody>
</table>

(includes schematic design of Davies Hall)

(Includes bookstore & game tables moving out of Backes)
PROJECT BACKGROUND NARRATIVE

A. CFP AND OTHER CAMPUS CONTEXT

This predesign addresses several projects identified in the Comprehensive Facilities Plan.

- Demolition of Administration building.
- Right-sizing and renovations in Backes, including consolidating administration program into building and addressing accessibility (restrooms and elevator) and HVAC. Create an improved and easy to navigate One-Stop Student Services destination.
- Right-sizing Davies, addressing accessibility (restrooms and elevator), and HVAC.
- Adding fire suppression in Backes and Davies.
- Site framework to improve campus entry, consolidate parking, and improve campus quad.
B. EXISTING CONDITIONS

Work includes demolishing (1) building, renovating (2) buildings.
EXISTING SITE CONDITIONS

1. EXISTING PARKING LOT
 - Existing parking lot hinders wayfinding experience to student center, and overall first impression of ICC.

2. WEST GATEWAY
 - Improve signage and landscaping to celebrate approach to Backes for visitors and prospective students.

3. ITASCA HALL
 - Access requires pedestrians to cross the primary vehicular circulation road.

4. BIKE TRAIL
 - Bike trail to campus from 169 stops in front of Wenger Hall, no further connections.

5. SOUTH LAWN
 - Expanse of lawn on south side of campus could provide a grand, welcome gesture.

6. MULLINS HALL
 - South side of Mullins Hall lacks landscaping, sidewalks, wayfinding, and is a poor aesthetic for the campus.

- PRIMARY PEDESTRIAN ROUTE
- GATEWAY/NODE
The administration building is in poor condition and is recommended to be demolished per the CFP. Building deficiencies/issues include:

- HVAC updates & AHU pneumatics need replacement
- No fire suppression
- Building exterior brick feature wall is in poor condition and shows signs of structural distress.
- Roof requires replacement
- ADA compliance is poor - no accessible restroom and accessible building entry is on the opposite side of the building from the parking lot.

The CFP describes the building location as not ideal for the function. When demolished, administration spaces will be co-located with One-Stop in Backes for improved student access. The current site will be banked for a more appropriate future use. All existing piping will be capped and sealed.
PROJECT BACKGROUND NARRATIVE

Itasca Community College | Predesign for Student Support and Success Modernization

BUILDING PLAN: ADMINISTRATION BUILDING
5,393 s.f.
ADMINISTRATION BUILDING

Building Exterior
Brick feature wall is in poor condition and requires repair.

Roof
The roof is nearing the end of its life cycle and requires replacement.

ADA Compliance
The main entrance from the west parking lot to the building is not accessible. Restroom is not accessible.

Offices
Single user offices lack flexibility and there is no collaboration space.

Storage
Closets are cramped and more space is required.

Program
Co-locating administration spaces with One-stop (in Backes) will improve student access to services and function better for staff.
CIVIL

Sanitary Sewer - Two 4” Sanitary sewer service connections
The existing sanitary sewer shown on the original design documents is a 4” cast iron pipe connected along the east side of the building that drains to an onsite 6” sanitary sewer which drains to the south. The second connection is shown on the original design documents as a 4” pipe connected along the middle section of the north side of the building that drains to an onsite 6” sanitary sewer that drains to the southeast. The proposed project includes the demolition of the existing administration building and associated utilities. The existing sanitary services will be cut and capped at the main. The proposed project does not include any civil site sanitary sewer improvements and will not impact the existing site sanitary sewer main.

Steam and Condensate Connections
The existing steam service shown on the original design documents is a 2” steam line and 1” condensate return line on the east side of the of the building. This service connects to the north and east side of the campus. The proposed project includes the demolition of the existing administration building and associated utilities. The existing steam service will be cut and capped at the main, which will include a partial reconnection at the main to continue the campus steam circulation.

Steam Service Location
Administration Building - Electrical and telecommunication connections
There are existing electrical transformer, electrical lines and telecommunications lines adjacent to the building. These lines will be impacted by the proposed demolition of the existing building. See Electrical Narrative for further information.

Electrical and telecommunication locations

MECHANICAL
The building will be torn down and mechanical systems disconnected. The building is connected to the campus heating system through a utility tunnel. The heating piping mains will need to be disconnected and removed in the tunnel back to the main distribution loop. All water, storm and sanitary services will be disconnected and capped at the mains outside the building.

ELECTRICAL
This building will be torn down. The existing electrical feed to the building will need to be disconnected. The medium voltage transformer will be disconnected and removed, the feeder will be removed. The fire alarm system campus communication loop will be updated for the removal of this building. The campus communication feeding this facility will need to be abandoned.

TECHNOLOGY
This building will be torn down. The existing fiber optic feed to the building will need to be disconnected.
BACKES HALL

FAST FACTS

GSF: 19,311 s.f.
Main Level: 9,782 s.f.
Mezzanine Level: 4,870 s.f.
Ground Level: 4,659 s.f.

Cost Replacement Value ($000’s): $13,524

Building Repair Backlog ($000’s): $4,257
(Additional $1,299 due by 2020)

Facilities Condition Index (FCI): .3

- Backes hall currently houses, student support offices, dining, the bookstore and lounge/game tables.
- The bookstore and lounge/game tables will be relocated to Davies and the new student union addition.
- The ramps will be removed and replaced with a new elevator.
- All offices from the administration will relocate to Backes to create a central student services building.
- No fire suppression.
- Restrooms are not accessible.
- Roof repairs are required and will be address by ICC as a separate project.
BUILDING PLAN: BACKES HALL
Mezzanine Level: 4,870 s.f.
Dining Hall
The dining space function well for large events, however for daily use a smaller area would meet the needs of the campus.

Cafeteria Kitchen
The kitchen and servery space functions well.

Cafeteria Office & Storage
There is not enough storage space and the office is currently located in the open dining area due to lack of back of house space.
BUILDING PLAN: BACKES HALL
Main Level: 9,782 s.f.
BACKES HALL

Ramp
The large curving ramp takes up a large footprint, limits flexibility, and is a visual barrier. The ramp limits an efficient use of space.

ADA Compliance
Restrooms require improved accessibility. There is no elevator and building circulation is confusing.

One Stop
This space is difficult to find behind the large ramp and a wall. However, once located, the adjacencies between the main service desk and offices function well.

Information Center
Due to the location adjacent to the entry, students often go here first even if they are looking for One Stop. Improved wayfinding and a more welcoming reception area is required.

One Stop - Workroom
Space behind the barrier of the ramp as been re-purposed for a workroom, however there could be a better use of space.
BUILDING PLAN: BACKES HALL
Ground Level: 4,659 s.f.
BACKES HALL

TRIO & Testing Offices
These spaces are newly remodeled. They are very welcoming with new finishes and lighting.

Bookstore
The bookstore is difficult to find, lacks visibility and transparency, and deliveries are challenging with only a narrow staircase.

Conference Room
Meeting space is limited.
CIVIL

Backes Student Center - 4” Sanitary sewer service connection
The existing sanitary sewer shown on the original design documents is a 4” pipe connected along the west side of the northwest wing of the building that drains to a 6” sanitary sewer which drains to the south. The proposed project does not include any civil site sanitary sewer improvements and will not impact the existing site sanitary sewer.

Backes Student Center - 2” Water service connection
The existing water service shown on the original design documents is a 2” pipe that is connected on the east side of the passageway on the north side of the building. The service connects to a 4” watermain that run east-west through the campus. There is an existing fire hydrant near the southwest corner of the building that connects to a 6” ductile iron pipe watermain that runs north-south through campus. A new 6” ductile iron pipe fire protection watermain is proposed for the proposed project. It is anticipated that this connection will be made on the west side of the building due to the close proximity of the existing 6” watermain running north-south.
Backes Student Center - 8” Storm sewer connection
The existing storm sewer shown on the original design documents is an 8” pipe connected along the southwest side of the building that drains to a 12” storm sewer which drains to the south. Additionally, there are two existing catch basins on the north side of the building that connect to the 12” storm sewer main to the west that drains to the south. The proposed project does not include any civil site storm sewer improvements and will not impact the existing site stormwater sewer.

North Side Catch Basins

Southwest Storm Connection

Backes Student Center - Gas service connection
The existing gas service shown on the original design documents is an existing gas meter and service on the east side of the building. This service connects to the main to the north which runs east-west through campus. The proposed project does not include any gas service improvements and will not impact the existing site gas main.
Backes Student Center - 4” Chilled water connections
The existing steam service shown on the original design documents is a 4” steam line and 2-1/2” condensate return line on the north side of the northwest wing of the building. This service connects to the north and east side of the campus. The proposed project does not include any steam line improvements and will not impact the existing steam lines.

Southwest Storm Connection

Backes Student Center - Telecommunications and electrical transformer connections
There are existing telecommunications lines and a transformer adjacent to the northwest and east side of the building. These lines will not be impacted by the proposed project. See Electrical Narrative for further information.

Electrical and telecommunication location
Backes Student Center Structural Scope Items:

- Accommodate new minor openings for mechanical and electrical systems
- Add an elevator

Backes Student Center is an existing two story building with a complex wood-framed roof (consisting of various prefabricated sloped roof trusses, l-joists, plywood sheathing, clerestory, and a major steel truss), one structural floor, and a cast-in-place, non-structural grade-supported slab. The existing structural floor system consists of precast concrete plank with a structural topping that is supported on both masonry and cast-in-place concrete walls as well as cast-in-place and precast concrete beams. The total thickness of the plank floor system varies between 8” (untopped 8” plank) and 14” (8” plank plus 6” topping or 12” plank plus 2” topping). Existing foundations consist of conventional cast-in-place concrete footings bearing on soil.

Installation of new vertical openings through the floor and roof for mechanical systems will need to be carefully coordinated with the location and span direction of individual structural members (roof truss or floor plank) to avoid damaging the structure and incurring significant reinforcing or reframing costs. For example, the long dimension of new openings must be parallel to the member span and the narrow dimension minimized to avoid significant reduction in structural capacity. Installation of horizontal openings through walls can generally be accommodated with minimal reinforcing. Installation of horizontal openings through precast or cast-in-place concrete beams is not recommended. New underground utilities will need to be coordinated with adjacent footing elevations but should not pose significant structural challenges.

Infill of existing open spaces with new floor framing to match adjacent floor elevations may utilize a concrete slab on metal deck supported by steel beams (nominal beam depths up to 14” anticipated). The overall slab depth (assuming no spray-on fire protection) will depend on the hourly separation required between floors. To reduce the end reactions and depth of individual steel beams, the use of shallow (1 1/2”) metal deck results in anticipated slab depths between 5” and 6” and beam spacing between 5’ and 7’ on center. Slabs should be reinforced with a light steel bar mat or welded wire fabric (approximately 1.0 psf reinforcing). Steel beams should span between existing walls (not existing beams) to avoid overloading the existing structure. Existing walls and footings may generally be assumed to have sufficient strength and stiffness to support proposed new floor infill without significant supplemental reinforcing. For preliminary pricing, the quantity of new steel infill framing (including edges, railings, and stairs) may be assumed approximately 7.0 psf.

The addition of a new elevator shaft either within the infill framing at existing open spaces or outside the footprint of the building may both be accommodated as described above for infill framing. Interior elevator shaft walls may be masonry or light gage (if permitted; the latter is recommended to reduce the weight of new systems). Exterior elevator shaft walls should be masonry or cast-in-place concrete. A new elevator pit will be required in either case, and should be carefully coordinated with adjacent existing footings to avoid undermining the footings (which are generally shallow at interior walls and approximately 4’ deep at exterior walls). It is assumed the elevator pit walls will be at least 8” thick cast-in-place concrete, reinforced with 2.0 psf reinforcing steel. It is assumed the elevator pit slab will be 12” thick cast-in-place concrete, reinforced with 45 psf reinforcing steel.
The addition of a new elevator opening within the existing precast concrete plank floor areas will require supplemental reinforcing to support any cut plank edges and transfer structural loads to adjacent walls. Steel beams tight to the underside of plank are anticipated. Elevator pit walls and slab as described above will be required.

MECHANICAL

Div 21: Sprinkler
Currently the building does not have a fire sprinkler system.

Div 22:
The major plumbing work in the building will happen with ADA upgrades to the existing bathrooms.

Div 23: HVAC:
Overall, the HVAC systems throughout the building are in good shape. The building heating plant is tied onto the building and serves the campus through a biomass hot water boiler system. The system currently does not have glycol anywhere in the main.

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Current controls throughout the building are a mixture of DDC and pneumatic.

ELECTRICAL

Div 26: Electrical
New LED lighting and automatic lighting controls will be added throughout renovated areas.

TECHNOLOGY

The campus buildings are connected the main data center via a modern fiber optic network with redundancies. The fiber optic network was last updated in 2013 and will support 10Gb connections in the future (currently running 1Gb). Each building has at least one Cisco switch that is connected to the campus core switch in the main data center and additional switches for connection to offices, wireless access points, etc. New horizontal UTP should be CAT 6.

In 2014, the campus upgraded their classroom technology standards to include high definition projectors, audio systems, and controller-based switching / control of components at the classroom lecterns.

Wi-Fi access is available at all indoor locations and each classroom has an access point.
DAVIES ART & SCIENCES

FAST FACTS

- GSF: 28,391 s.f.
- 1st Level: 17,750 s.f.
- 2nd Level: 10,641 s.f.

Cost Replacement Value ($000’s): $13,037

Building Repair Backlog ($000’s): $4,765
(Additional $163 due by 2020)

Facilities Condition Index (FCI): .4

- Space utilization in Davies is low.
- HVAC units cause acoustic issues in classrooms.
- Accessibility issues
- Building does not have sprinkler system
- HVAC system needs to be updated
- Fire Alarm System to be replaced/upgraded
BUILDING PLAN: DAVIES ART & SCIENCES

GSF: 28,391 s.f.
1st Level: 17,750 s.f.
2nd Level: 10,641 s.f.
DAVIES ART & SCIENCES

Music Room
This room is not accessible due to building location on a half level with a small non-accessible elevator and platforms in the room.

2D Art Studio
The art studio has poor lighting/controls and ventilation. There is limited storage space and no natural light.

Nursing Faculty Offices
Offices are private and function well.

Engineering Concept Lab & Storage
The lab was located here due to available space on campus, however the room lacks accessibility and is too small to adequately meet the needs of the program.

ITV Classroom
The room is adequate in size, however technology is constantly evolving and will need to be updated.

Practical Nursing Classroom
HVAC is noisy and room layout lacks space for a demonstration bed.
BUILDING PLAN: DAVIES ART & SCIENCES

1st Level: 17,750 s.f.
2nd Level: 10,641 s.f.
GSF: 28,391 s.f.
DAVIES ART & SCIENCES

Computer Room
As more students have their own laptops, a computer room is no longer needed on campus. This is available SF for other programs.

IT Storage - Open
This space is no longer needed for IT storage is available SF for other programs.

Practical Nursing Lab
Long narrow room is difficult for flexible room setup; Noisy HVAC.

Restrooms
The restrooms in Davies do not meet accessibility codes.

Floating Computer Stations
These computer stations are located on the second floor. Their function is unclear given that there is a dedicated computer room.

Advanced Minnesota Offices
These offices are the result of found space on campus and could be located in any building.
EXISTING UTILIZATION PLAN

Space utilization in Davies is low. The Music room is used as a multi-purpose classroom and classes held here can be relocated to other low use rooms on campus. There are (2) ITV classrooms, and while usage is currently low, they support all programs on campus and must be maintained.
DAVIES HALL

Nursing Classroom 133
Med 53%

ITV Classroom 132
Low 0%

Music
Low 8%

Art
Low 37%

Davies: First Level Utilization Spring 2018

Computer Room 233
Low 46%

Practical Nursing Lab

Nursing Simulation Lab 231
No data available

ITV Classroom 203
Low 8%

Davies: Second Level Utilization Spring 2018
Davies Hall - 6” Sanitary sewer service connection
The existing sanitary sewer shown on the original design documents is a 6” pipe connected along the east side of the northeast wing of the building that connects to an onsite 6” sanitary sewer which drains to the east.
The proposed project does not include any civil site sanitary sewer improvements and will not impact the existing site sanitary sewer.

Davies Hall - 6” Water service connection
The existing water service connect to the building is a 6” ductile iron pipe that is connected on the north side of the northeast wing of the building. The service connects to a 6” watermain that runs north-south on the east side of the building.
There is an existing fire hydrant on the south side of the building that connects to a 4” pipe watermain that runs east-west through campus. A new 6” ductile iron pipe fire protection watermain is proposed for the proposed project. It is anticipated that this connection will be made on the north side of the northeast wing of the building adjacent to the existing water service due to the proximity to the existing 6” watermain running north-south.
Architectural Site Plan A-1 Fire Hydrant Location

Davies Hall - Gas service connection
The existing gas service shown on the original design documents is on the east side of the northwest wing of the building. This service connects to the main to the north and east side of the building which runs north-south through campus. The proposed project does not include any gas service improvements and will not impact the existing gas main.

Gas Service Location

STEAM

Davies Hall - Steam and condensate connections
The existing steam service shown on the original design documents is a 4” steam line and 2-1/2” condensate return line on the north side of the northwest wing of the building. This service connects to the north and east side of the campus. The proposed project does not include any steam line improvements and will not impact the existing steam lines.
Steam Service Location

Davies Hall - Electrical connections
There are existing electrical lines and a transformer adjacent to the east side of the building. These lines will not be impacted by the proposed project. See Electrical Narrative for further information.

Electrical and telecommunication location

MECHANICAL

Div 21: Sprinkler
Currently the building does not have a fire sprinkler system.

Div 22:
The major plumbing work in the building will happen with ADA upgrades to the existing bathrooms.

Div 23: HVAC:
Overall, the HVAC systems throughout the building need to be upgraded. The building is served by antiquated HVAC equipment that are at the end of useful life and do not meet
current energy or ventilation standards.

Currently the building heating is served from the campus hot water boiler plant. The heating mains do NOT have glycol installed, and the fresh air coils in the building are susceptible to freezing.

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Current controls throughout the building are almost entirely pneumatic.

ELECTRICAL

Div 26: Electrical
New LED lighting and automatic lighting controls will be added throughout renovated areas and areas where new HVAC ductwork will be installed.

TECHNOLOGY

Div 27: Communications
Fiber optic service to the facility is up to date.

Div 28: Electronic Safety and Security
The current fire alarm system is outdated will be replaced with new.

Campus video surveillance system is modern. Cameras locations will be updated corresponding with renovations.
B. SITE DESIGN

- Maintains the existing road layout.
- Removes parking on the south side of the Mullins facade and in a future phase expands south parking lot in a future phase.
- Adds a node at the end of the “Pedestrian Spine” of campus.
- Infills green space when the Administration Building and parking lot are removed.
Itasca Community College | Predesign for Student Support and Success Modernization

PLAZA SPACE
- Opportunity for campus gathering space outside the Library & Davies Hall

WELCOME AREA
- Opportunity for improved plaza space with seating, public art, wayfinding signage, planting

GREEN BUFFER
- Remove parking and replace with green buffer along Mullins Hall

LANDMARK/NODE
- Opportunity for campus landmark that incorporates wayfinding into unique character of ICC

PARKING
- Expand south parking lot

Academic Building Usage

- Option 1

- **PLAZA SPACE**
 - Opportunity for campus gathering space outside the Library & Davies Hall

- **WELCOME AREA**
 - Opportunity for improved plaza space with seating, public art, wayfinding signage, planting

- **GREEN BUFFER**
 - Remove parking and replace with green buffer along Mullins Hall

- **LANDMARK/NODE**
 - Opportunity for campus landmark that incorporates wayfinding into unique character of ICC

- **PARKING**
 - Expand south parking lot
PROJECT DESCRIPTION

Itasca Community College | Predesign for Student Support and Success Modernization

07.24.18

student center / a

PLAZA

• Update plaza with enhanced paving, site furnishings, benches

WELCOME & WAYFINDING SIGN

SHADE TREES/LIGHTING

PLAZA

CROSSWALK

• Elevate pedestrian crosswalk to parking lot

LANDSCAPING

• Prune and remove plants covering windows, replant shrubs and perennials

ENTRY COURT
PROJECT DESCRIPTION

Itasca Community College | Predesign for Student Support and Success Modernization

PROPOSED ENTRANCE
- New south entrance to Mullins, enhanced paving, lighting, and

ENHANCED LANDSCAPING
- Add overstory shade trees, shrubs and perennials

LANDSCAPE SCREENING

WELCOME & WAYFINDING SIGN

CRITICAL VIEW

PARKING LOT
- Screen with shrubs and shade trees, typ.

SOUTH ENTRANCE: SMALL
PROJECT DESCRIPTION

BACKES HALL

Affected Programs:
- Student Services
- Administration
- Dining
- Bookstore

Project Goals:
- Remove ramp and replace with new elevator and improved building circulation.
- Relocate all administration program into the building.
- Create a one-stop center for all student services.
- Create a clear focal point for students and visitors; improve wayfinding and space visibility.
- Expand Kitchen/ storage/ office area into the Viking room.
- Maintain Trio & testing center in current location.
- Create accessible restrooms.
- Update building systems (mechanical and electrical).
- Improve life safety with the addition of sprinklers.
MinnState Space Planning Guidelines were reviewed to determine appropriate office sizes. However, in the remodel, many existing offices are planned to be reused and sizes differ from guidelines.

PROJECT DESCRIPTION

Program Description

Itasca Community College | Predesign for Student Support and Success Modernization

Administrative Suite

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>EXIST SF</th>
<th>PRE-DESIGN SF</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provost Office</td>
<td>260 (A)</td>
<td>260</td>
<td>Office is also used as a private meeting room</td>
</tr>
<tr>
<td>Admin Support</td>
<td>150 (A)</td>
<td>80</td>
<td>Consider cubicle</td>
</tr>
<tr>
<td>Foundation Director Office</td>
<td>180 (A)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>NHED Office</td>
<td>150 (A)</td>
<td>150</td>
<td>President/ NHED staff rotate across campuses and required a hoteling office; when larger space is required- provost office is used</td>
</tr>
<tr>
<td>Dean of Students Office</td>
<td>140</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Academic Affairs Office</td>
<td>160 (A)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8 Person Meeting Room</td>
<td>245 (A)</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Reception Seating</td>
<td>265 (A)</td>
<td>150</td>
<td>Due to layout of admin., seating is split into (2) areas, if offices are co-located (1) central reception area is desired</td>
</tr>
</tbody>
</table>

Offices

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>EXIST SF</th>
<th>PRE-DESIGN SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Institutional Research</td>
<td>145 (A)</td>
<td>120</td>
</tr>
<tr>
<td>Special Projects Coord Off.</td>
<td>115 (A)</td>
<td>120</td>
</tr>
<tr>
<td>Upward Bound Director Office</td>
<td>205 (A)</td>
<td>120</td>
</tr>
<tr>
<td>Upward Bound Admin Asst.</td>
<td>130 (A)</td>
<td>0</td>
</tr>
<tr>
<td>Upward Bound Shared Office</td>
<td>125 (A)</td>
<td>160</td>
</tr>
<tr>
<td>Upward Bound Storage</td>
<td>20 (A)</td>
<td>60</td>
</tr>
<tr>
<td>Trio: 4 Offices & Reception</td>
<td>945</td>
<td>945</td>
</tr>
</tbody>
</table>

One-Stop

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>EXIST SF</th>
<th>PRE-DESIGN SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main desk & Reception/ Seating</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Financial Aid- Director's Office</td>
<td>112</td>
<td>110</td>
</tr>
<tr>
<td>Financial Aid- Asst. Office</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Registrar Office</td>
<td>116</td>
<td>110</td>
</tr>
<tr>
<td>Councilor Office</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Councilor Office</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>Recruitment/ Retention Office</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Director of Enrollment Services Office</td>
<td>130</td>
<td>120</td>
</tr>
<tr>
<td>Director of Housing Office</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Business Manager Workstations (qty 2)</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>Student Services- Info Center</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>
STUDENT TESTING CENTER

<table>
<thead>
<tr>
<th></th>
<th>Remodeled 2013, Existing to remain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>120</td>
</tr>
<tr>
<td>Testing Room</td>
<td>735</td>
</tr>
</tbody>
</table>

DINING SERVICES

<table>
<thead>
<tr>
<th></th>
<th>Part of dining room can be closed off to create meeting space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Room</td>
<td>2250</td>
</tr>
<tr>
<td>Kitchen/Server/Storage</td>
<td>1250</td>
</tr>
<tr>
<td>Check-out counter</td>
<td>50</td>
</tr>
<tr>
<td>Vending Machines</td>
<td>100</td>
</tr>
<tr>
<td>Dining Manager Office</td>
<td>80</td>
</tr>
</tbody>
</table>

MEETING ROOMS

<table>
<thead>
<tr>
<th></th>
<th>Included in admin suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Person Meeting Room</td>
<td>500 (A)</td>
</tr>
<tr>
<td>20 Person Meeting Room</td>
<td>400</td>
</tr>
<tr>
<td>Large Meeting Room</td>
<td>990</td>
</tr>
<tr>
<td>Viking Meeting Room</td>
<td>410</td>
</tr>
</tbody>
</table>

SHARED SUPPORT SPACES

<table>
<thead>
<tr>
<th></th>
<th>Currently adjacent to kitchen and used mainly for storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Breakroom</td>
<td>350</td>
</tr>
<tr>
<td>Workroom</td>
<td>120</td>
</tr>
<tr>
<td>Shredding/Storage</td>
<td>60 (A)</td>
</tr>
<tr>
<td>Mother’s Room</td>
<td>130 (A)</td>
</tr>
<tr>
<td>Mail Room</td>
<td>110 (A)</td>
</tr>
<tr>
<td>Data Closet</td>
<td>50</td>
</tr>
</tbody>
</table>

RESTROOMS

<table>
<thead>
<tr>
<th></th>
<th>4WC, 3S required each men/women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>2WC, 3U, 3S</td>
</tr>
<tr>
<td>Women</td>
<td>3WC, 2S</td>
</tr>
<tr>
<td>Unisex</td>
<td>0</td>
</tr>
<tr>
<td>Janitor’s Closet</td>
<td>32</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th></th>
<th>Existing to remain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>800</td>
</tr>
<tr>
<td>Sprinkler Room</td>
<td>50</td>
</tr>
</tbody>
</table>

VERTICAL CIRCULATION

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Elevator</td>
</tr>
<tr>
<td>New Stair Down</td>
</tr>
<tr>
<td>New Stair Up</td>
</tr>
</tbody>
</table>
BACKES

Key Program Features:
- One stop desk relocated from behind a wall to prominent location in main space near entry with supporting one-stop offices directly behind the desk and across from desk. Use existing offices and infill additional offices.
- Administration suite located on 1st floor.
- Bookstore relocated to Davies and space infilled with Upward Bound & offices.
- Maintain large lower level conference room and create small and medium meeting rooms on main floor.
- Shared staff support spaces with breakroom, mother’s room, (2) unisex accessible restrooms.
- Renovated public restrooms with handicap accessible stalls.

MECHANICAL

Div 21: Sprinkler
The building will have a system added to meet current codes and improve the overall life safety for the students, teachers, and occupants. The sprinkler system will require a new 6” water main, which will be tied off of the existing 8” campus water loop.

Div 22:
The major plumbing work in the building will happen with ADA upgrades to the existing bathrooms. The bathrooms will be remodeled with all new piping, fixtures and trim. All piping will need to meet current MN Plumbing Codes, and MNSCU design standards.
- Water Closets will be wall hung, low flow - 1 GPF, with sensor flush valves.
- Urinals will be low wall hung, low flow with sensor flush valves.
- Lavatories will be countertop (undermount or integral to be determined) with sensor style faucets

Additional ADA restrooms are being added on the first floor. New waste lines will need to be connected and new water and vent routed to this area.

Domestic water heating will be upgraded as a part of this project.

A new elevator is being installed. A sump pit and code sized sump pump system shall be installed to accommodate the new elevator installation.

Div 23: HVAC:
It is recommended that all outdoor air coils be upgraded to have glycol installed in them with a new hot water glycol loop and heat exchanger. This will include the existing air handling units in the building.

Solar preheat should be looked at to increase the energy efficiency of the air handling systems. This would be installed off the 2nd floor mechanical room where the existing air handling units reside.

Dedicated cooling should be added for the elevator equipment room.

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Current controls throughout the building are a mixture of DDC and pneumatic. Energy conservation measures such as carbon dioxide monitoring to reset outside air, energy
recovery on all exhausted spaces, building pressurization controls and aggressive equipment scheduling need to be incorporated into the new controls systems.

ELECTRICAL

Div 26: Electrical
New LED lighting and automatic lighting controls will be added throughout renovated areas.

Branch circuit panels and electrical serviced gear to be replaced with new. Renovated areas will be completely rewired corresponding to building renovations for new lighting, receptacles, and HVAC equipment.

TECHNOLOGY

Div 27: Communications
Fiber optic service to the facility is up to date. Horizontal copper cabling will need to be replaced as part of renovation. Classroom / meeting room technology will be updated to current campus standards.

Div 28: Electronic Safety and Security
The current fire alarm system has been recently upgraded. No major system updates are needed; system modifications will be needed corresponding with building renovations.

Exterior doors should be refit without electric hardware and card readers.

Campus video surveillance system is modern. Cameras locations will be updated corresponding with renovations.

STRUCTURE

See description of project background narrative for more information on structural requirements for elevator and floor infill.
PROJECT DESCRIPTION

DAVIES

Affected Programs:
- Nursing
- Art
- Music

Project Goals:
- Right-size classrooms and labs.
- Maintain use of theater and stage.
- Maintain (2) ITV classrooms.
- Accessibility- restrooms, larger elevator, take inaccessible rooms off-line from student program space.
- Co-locate programs and services that support the new student hub.
- Update building to current code requirements- eliminate dead end corridors.
- Update building systems (mechanical and electrical).
- Improve life safety with the addition of sprinklers
MinnState Space Planning Guidelines were reviewed. The art studio and nursing labs operate similar to the studio lab as described. “Practical lab spaces are provided in the same room as traditional classroom setting so that classes can move seamlessly from lecture to lab work.”

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>EXIST SF</th>
<th>PRE-DESIGN SF</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical Nursing Lab</td>
<td>1220</td>
<td>1470</td>
<td>studio lab</td>
</tr>
<tr>
<td>Practical Nursing Classroom</td>
<td>980</td>
<td>1200</td>
<td>40 students & demonstration bed/ storage</td>
</tr>
<tr>
<td>Nursing Assistant Lab & Storage Room</td>
<td>1340</td>
<td>1340</td>
<td>studio lab, Existing to remain</td>
</tr>
<tr>
<td>Nursing Student Lounge</td>
<td>720</td>
<td>833</td>
<td>Study/Lounge space, kitchenette</td>
</tr>
<tr>
<td>Faculty workroom/meeting room</td>
<td>290</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Faculty Offices- Practical Nursing</td>
<td>990</td>
<td>990</td>
<td>Existing to remain</td>
</tr>
<tr>
<td>Faculty Office- Nursing Asst.</td>
<td>100</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Computer Classroom</td>
<td>1270</td>
<td>0</td>
<td>Room no longer required</td>
</tr>
<tr>
<td>Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Office</td>
<td>85</td>
<td>100</td>
<td>studio lab</td>
</tr>
<tr>
<td>Studio- 2D Art</td>
<td>1020</td>
<td>1200</td>
<td>Program lab</td>
</tr>
<tr>
<td>Studio- Ceramics</td>
<td>870</td>
<td>0</td>
<td>Program no longer offered after Fall 2018</td>
</tr>
<tr>
<td>Kiln & Prep</td>
<td>270</td>
<td>0</td>
<td>Program no longer offered after Fall 2018</td>
</tr>
<tr>
<td>Storage</td>
<td>0</td>
<td>150</td>
<td>Storage needed to support studio space</td>
</tr>
<tr>
<td>ITV Classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom</td>
<td>490</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Classroom</td>
<td>830</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>Theater & Stage</td>
<td></td>
<td></td>
<td>Existing to remain</td>
</tr>
<tr>
<td>Offices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced MN</td>
<td>230</td>
<td>230</td>
<td>Existing to remain</td>
</tr>
<tr>
<td>Restrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>4WC, 4U, 4S</td>
<td>4 WC, 2U 4S</td>
<td>7WC, 4S required each men/women</td>
</tr>
<tr>
<td>Women</td>
<td>6WC, 4S</td>
<td>6WC, 4S</td>
<td></td>
</tr>
<tr>
<td>Unisex</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Janitor’s Closet</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bookstore to be co-located with student union.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Use of spaces taken offline, existing space in Dailey is being re-purposed for the Engineering Concept Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Staff</td>
<td>Office, lounge, storage, workroom</td>
</tr>
<tr>
<td>Mechanical/IT</td>
<td></td>
</tr>
<tr>
<td>Server Room</td>
<td>180</td>
</tr>
<tr>
<td>Mechanical-Existing</td>
<td>450</td>
</tr>
<tr>
<td>Mechanical- for Davies</td>
<td>0</td>
</tr>
</tbody>
</table>

New Elevator
DAVIES

Key Program Features:
- Relocate & right-size all nursing labs, classroom, and nursing community lounge to 2nd floor.
- Right-size and relocate Art studio/classroom to support goals/space requirements for student center project.
- Inaccessible classrooms taken off-line and used for storage.
Davies: Upper Level

Student Union (red outline)- Not in project scope

Student Union (red outline)- Not in project scope
MECHANICAL

Div 21: Sprinkler
The building will have a system added to meet current codes and improve the overall life safety for the students, teachers, and occupants. The sprinkler system will require a new 6” water main, which will be tied off of the existing 8” campus water loop.

Div 22:
The major plumbing work in the building will happen with ADA upgrades to the existing bathrooms. The bathrooms will be remodeled with all new piping, fixtures and trim. All piping will need to meet current MN Plumbing Codes, and MNSCU design standards.
- Water Closets will be wall hung, low flow - 1 GPF, with sensor flush valves.
- Urinals will be low wall hung, low flow with sensor flush valves.
- Lavatories will be countertop (undermount or integral to be determined) with sensor style faucets

There are new bathroom groups on the first floor that will require floor chopping for new waste lines to be installed, along with new water/waste/vent piping.

Div 23: HVAC:
Overall, the HVAC systems throughout the building need to be upgraded.

B3 and SB2030 requirements will need to be followed for the design of the building.

The new HVAC system for the classrooms shall be similar to a chilled beam system with dedicated outside air, or a VAV system with terminal heating coils. The system will have an air handling unit with a supply fan, heating coil (with glycol), DX cooling coil, filter section, economizer and return air fan. The individual spaces should be controlled independently with VAV boxes in the ductwork with terminal heating coils for zone control.

The auditorium space will have a separate AHU. The AHU should have displacement ventilation installed to increase energy efficiency. The unit will be configured similar to the classroom units.

Currently the building heating is served from the campus hot water boiler plant. The heating mains do NOT have glycol installed, and the fresh air coils in the building are susceptible to freezing. A glycol heat exchanger will need to be added to protect the fresh air coils in the building.

An overall building pressurization sequence should be built into the new HVAC system to increase building efficiencies. Preheat on the outside air via solar wall panels should also be incorporated.

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Energy conservation measures such as carbon dioxide monitoring to reset outside air, energy recovery on all exhausted spaces, building pressurization controls and aggressive equipment scheduling need to be incorporated into the new controls systems.
ELECTRICAL

Div 26: Electrical
New LED lighting and automatic lighting controls will be added throughout renovated areas and areas where new HVAC ductwork will be installed. Renovated areas will be completely rewired corresponding to building renovations for new lighting, receptacles, and HVAC equipment. The upgraded HVAC system will require electrical distribution system modifications including service replacement, new electrical distribution panels and branch circuit panels.

TECHNOLOGY

Div 27: Communications
Fiber optic service to the facility is up to date. Horizontal copper cabling will need to be replaced as part of renovation. Classroom / meeting room technology will be updated to current campus standards. The nursing program has a simulation lab with software that controls medical dummies. The software runs on standard computers. Currently, the program is not recording or providing live playback of video or audio from the simulation rooms. Space will be planned for this function to be added in the future.

Div 28: Electronic Safety and Security
The current fire alarm system is outdated and should be replaced with new. Sprinkler system monitoring will be added to the fire alarm system.
Exterior doors should be refit without electric hardware and card readers.
Campus video surveillance system is modern. Cameras locations will be updated corresponding with renovations.
SUSTAINABILITY AND ENERGY

A. RENEWABLE ENERGY COST-BENEFIT ANALYSIS

The proposed construction work at Itasca Community College will involve a major remodel of Davies Hall, which encompasses an approximate area of 28,400 gross square feet. The college has a renewable energy central heating plant, and Davies Hall will be connected to that system. Using the energy modeling software Trane TRACE 700 and national building performance statistics published in ASHRAE Standard 100, it was estimated that the annual energy consumption for the newly renovated Davies building is expected to be 998,511 kWh per year. The alternative energy systems should be sized to produce an amount of energy equal to at least 2% of this figure, or 19,970 kWh per year. Converted to Btu's, this equals about 68.14 million Btu's per year.

The Clean Energy project Analysis Software of RETScreen International was used to forecast the capacity and performance of solar photovoltaic, solar thermal, and wind systems. The software allows for input of local weather conditions, capital costs, design costs, and local energy prices. For each type of alternative energy system, a present-value cost analysis has been performed, using the RETScreen software. Cost figures are present-day values for total turn-key systems. Incentives and grants may be available to partially offset some of the capital cost, but have not been included in this analysis. Energy cost savings are the present value of amount of energy cost avoided by using the alternative system.

SOLAR PHOTOVOLTAIC SYSTEM

An array of roof-mounted, fixed-tilt solar panels with photovoltaic cells was assumed for this system. In order to generate at least 2% of the building’s estimated annual energy consumption, a solar array capable of 14 kW output would need to be installed. The estimated installed cost for a system of this size is $56,000. The computer model indicates an annual energy savings of 21,059 kWh and an annual cost savings of $1,930. The simple payback for this system would be approximately 29 years.

SOLAR THERMAL SYSTEM

An array of roof-mounted, fixed-tilt solar thermal collectors to preheat water for the hydronic heating system was assumed for this system. In order to generate at least 2% of the building’s estimated annual energy consumption, a solar array capable of 195 kBtu per hour would need to be installed. The estimated installed cost for a system of this size is $26,000. The computer model indicates an annual energy savings of 70,455 kBtu and an annual cost savings of $1,930. The simple payback for this system would be approximately 18 years.

WIND ENERGY SYSTEM

A 60ft tall, ground-mounted wind turbine was assumed for this system. In order to generate at least 2% of the building’s estimated annual energy consumption, a wind turbine capable of 4 kW output would need to be installed. The estimated installed cost for a system of this size is $51,000. The computer model indicates an annual energy savings of 21,900 kWh and an annual cost savings of $2,015. The simple payback for this system would be approximately 25 years.
B. DESCRIPTION OF PLAN TO ACHIEVE COMPLIANCE WITH MN B3 GUIDELINES

All B3 Guidelines will be met.

STORMWATER MANAGEMENT

Minnesota Pollution Control Agency (MPCA)
The Minnesota Pollution Control Agency (MPCA) requires permanent stormwater management to meet their requirements if the amount of new impervious area will be 1.0 acre or more. The MPCA stormwater management rules require the site development to meet the following standards:

- Rate Control – Proposed runoff shall not exceed existing 5.66 cubic feet per second for the 100-yr 24-hour storm event.
- Water Quality – 80% total suspended solids shall be removed.
- Volume Control – 1” abstracted from the impervious areas on site.

Minnesota B3 Guidelines for Stormwater Management
The Minnesota B3 Stormwater Management guidelines require the site development to meet the following standards:

A. Runoff Rate and Volume:
1. Control the rate of runoff from the post-development site to match the runoff rates for the native soil and vegetation conditions for the 2-year and 10-year, 24-hour design storms.
2. Prohibit discharge from the site for 1.1 inches of runoff from all new or redeveloped impervious (non-vegetated) areas.

B. Runoff Quality:
1. Provide treatment systems designed to remove 80% of the post-development Total Suspended Solids (TSS).
2. Provide treatment systems designed to remove 60% of the post-development Total Phosphorus (TP).

Table 1: Results of Calculations

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Solar PV</th>
<th>Solar Thermal</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>14 kW</td>
<td>195 kBu/hr</td>
<td>4 kW</td>
</tr>
<tr>
<td>Annual Avoided Energy</td>
<td>21,059 kWh/yr</td>
<td>70,455 kBu/yr</td>
<td>21,900 kWh/yr</td>
</tr>
<tr>
<td>% Annual Consumption*</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Annual Avoided Expense</td>
<td>$1,928/yr</td>
<td>$1,450/yr</td>
<td>$2,015/yr</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$56,000</td>
<td>$26,000</td>
<td>$51,000</td>
</tr>
<tr>
<td>Payback in Years</td>
<td>29</td>
<td>18</td>
<td>25</td>
</tr>
</tbody>
</table>

* Percentage of the projected consumption for the newly renovated Davies building
C. Operations and Maintenance Manual All stormwater BMPs must have an Operations and Maintenance manual created which outlines maintenance requirements and schedules for completion. Operations and Maintenance manuals shall be recorded with the County Registrar.

Guideline S.2 Stormwater Management outlines the performance criteria and states the more stringent of rules between itself and other regulatory agencies shall govern.

EROSION CONTROL

Erosion and sediment control will be required wherever there is earth moving, trenching or selective site demolition. Temporary control will be required along all edges, slopes, catch basin inlets within and surrounding the construction area. Perimeter erosion control will border the disturbed area. Erosion control will consist of catch basin inserts, silt fence, biologs or a combination of systems to prevent sedimentation of storm sewer, swales, and gutters. Construction entrances, vehicle tracking mats and concrete washout areas will also need to adhere to MPCA rules and requirements. Street sweeping will be required.

An NPDES permit is required for construction projects that disturb one acre or more of land. A Storm Water Pollution Prevention Plan (SWPPP) will be prepared as part of the construction document set and construction will need to adhere to the requirements regardless of the need for a permit.

Erosion control permits may be required from the City of Grand Rapids.
A. CONSTRUCTION COSTS

Administration

- Architectural: $108,000
- Mechanical: $0
- Subtotal: $108,000
- Total: $151,496

Backes

- Architectural: $1,467,500
- Mechanical: $746,800
- Subtotal: $2,214,300
- Total: $3,106,085

Davies

- Architectural: $1,337,825
- Mechanical: $1,090,000
- Subtotal: $2,427,825
- Total: $3,405,605

Site

- Subtotal: $350,000
- Total: $490,959

Construction Totals include permits, bonds, design & construction contingencies, general conditions, etc.

- Construction Total: $7,154,145
- 2020 Project Total: $10,051,000
Price Estimating by Loeffler—During development of predesign project we looked at several buildings on campus and adjusted scope to fit overall budget and campus priorities.

SUBTOTAL COST

<table>
<thead>
<tr>
<th>Item</th>
<th>Percentage</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Permit, Plan Check Fee & State Surcharge</td>
<td>1.00%</td>
<td>$1,000</td>
</tr>
<tr>
<td>Subcontractor Bonds</td>
<td>0.50%</td>
<td>$500</td>
</tr>
<tr>
<td>Design Contingency</td>
<td>10.00%</td>
<td>$10,000</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>10.00%</td>
<td>$10,000</td>
</tr>
<tr>
<td>General Conditions</td>
<td>8.00%</td>
<td>$8,000</td>
</tr>
<tr>
<td>Insurance, Bond, OH & P</td>
<td>5.75%</td>
<td>$5,750</td>
</tr>
</tbody>
</table>

TOTAL AMOUNT: $34,580

Factors included in total Construction costs per building

<table>
<thead>
<tr>
<th>Architectural Description</th>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Demolish Existing Building - Includes Trucking, Equipment, & Disposal</td>
<td>Demolish Building</td>
<td>400</td>
<td>GSF</td>
<td>$20.00</td>
<td>$8,000</td>
</tr>
<tr>
<td></td>
<td>Utility Disconnect Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Section Total $8,000</td>
</tr>
<tr>
<td>2 New Entry Plaza</td>
<td>Earthwork</td>
<td>1</td>
<td>LOTF</td>
<td>$300.00</td>
<td>$300.00</td>
</tr>
</tbody>
</table>

SUB-TOTAL SECTIONS: $450,000
FINANCIAL INFORMATION

Architectural Description: Revise Existing Space for New Program Areas

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Floor</td>
<td>700</td>
<td>SF</td>
<td>$15.00</td>
<td>$10,500</td>
</tr>
<tr>
<td>Office 6-9</td>
<td>500</td>
<td>SF</td>
<td>$17.50</td>
<td>$8.750</td>
</tr>
<tr>
<td>Restrooms (New)</td>
<td>2</td>
<td>EA</td>
<td>$100,000.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>Restrooms (Existing)</td>
<td>2</td>
<td>SF</td>
<td>$25.00</td>
<td>$50,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$947,000</td>
</tr>
</tbody>
</table>

Architectural Description: Upgrade Existing Meeting Room / Dining

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade Existing</td>
<td>2000</td>
<td>SF</td>
<td>$50.00</td>
<td>$100,000</td>
</tr>
<tr>
<td>Glass Wall & Sliding Doors</td>
<td>55</td>
<td>LF</td>
<td>$50.00</td>
<td>$2,750</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$102,750</td>
</tr>
</tbody>
</table>

Architectural Description: Add 3-Stop Elevator

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation</td>
<td>1</td>
<td>LOT</td>
<td>$25,000.00</td>
<td>$25,000</td>
</tr>
<tr>
<td>Shaft</td>
<td>1</td>
<td>LOT</td>
<td>$50,000.00</td>
<td>$75,000</td>
</tr>
<tr>
<td>Penthouse</td>
<td>1</td>
<td>LOT</td>
<td>$45,000.00</td>
<td>$45,000</td>
</tr>
<tr>
<td>3-Stop Car</td>
<td>3</td>
<td>STOP</td>
<td>$45,000.00</td>
<td>$135,000</td>
</tr>
<tr>
<td>MEP Requirements</td>
<td>1</td>
<td>LOT</td>
<td>$10,000.00</td>
<td>$10,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$240,000</td>
</tr>
</tbody>
</table>

Architectural Description: Demolish Existing Ramp at Center of Beaken Hall

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo Ramp</td>
<td>1</td>
<td>LOT</td>
<td>$75,000.00</td>
<td>$75,000</td>
</tr>
<tr>
<td>Infill Ramp with New Floor</td>
<td>300</td>
<td>SF</td>
<td>$100.00</td>
<td>$30,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$105,000</td>
</tr>
</tbody>
</table>

Architectural Description: New Structure for Staircase

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation</td>
<td>1</td>
<td>LOT</td>
<td>$25,000.00</td>
<td>$25,000</td>
</tr>
<tr>
<td>Shaft</td>
<td>1</td>
<td>LOT</td>
<td>$75,000.00</td>
<td>$75,000</td>
</tr>
<tr>
<td>Star Assembly</td>
<td>2</td>
<td>LOT</td>
<td>$35,000.00</td>
<td>$70,000</td>
</tr>
<tr>
<td>MEP Requirements</td>
<td>1</td>
<td>LOT</td>
<td>$7,500.00</td>
<td>$7,500</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$137,500</td>
</tr>
</tbody>
</table>

Architectural Description: Service / Kitchen / Storage Upgrades

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowance</td>
<td>1</td>
<td>AMES</td>
<td>$15.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$15.00</td>
</tr>
</tbody>
</table>

Architectural Description: Meeting Room / Trio / Testing

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Ceiling</td>
<td>3000</td>
<td>EA</td>
<td>$15.00</td>
<td>$45,000</td>
</tr>
<tr>
<td>Partition</td>
<td>50</td>
<td>LF</td>
<td>$100.00</td>
<td>$50.00</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$45,500</td>
</tr>
</tbody>
</table>

Mechanical Description: HVAC Improvements to Existing Space

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>19110</td>
<td>SF</td>
<td>$10.00</td>
<td>$191,100</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$191,100</td>
</tr>
</tbody>
</table>

Mechanical Description: New Fire Suppression Systems

<table>
<thead>
<tr>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>19100</td>
<td>SF</td>
<td>$8.5000</td>
<td>$167,500</td>
</tr>
<tr>
<td>Fire Service</td>
<td>1</td>
<td>ALLOW</td>
<td>$25,000.00</td>
<td>$25,000</td>
</tr>
<tr>
<td>6" Watermain</td>
<td>1</td>
<td>ALLOW</td>
<td>$25,000.00</td>
<td>$25,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$192,500</td>
</tr>
</tbody>
</table>

Sub-Total $1,467,500
Financial Information

Project Name: Itasca Community College Architectural and HVAC Improvements
Project Location: 1851 US-169, Grand Rapids, MN 55744
Description: Pre-Design Estimate
Owner: Itasca Community College
Architect: BTR
Date: Thursday, September 20, 2018
Estimators: Talon DeVitz
Project Scope: Davies Hall - Architectural

Construction Costs

<table>
<thead>
<tr>
<th>Architectural Description</th>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Renovate Existing Space for New Program Areas</td>
<td>Bookstore / Storage / Outdoor Equip. Rental</td>
<td>2315</td>
<td>SF</td>
<td>$75.00</td>
<td>$173,250</td>
</tr>
<tr>
<td></td>
<td>Nursing Offices</td>
<td>980</td>
<td>SF</td>
<td>$50.00</td>
<td>$49,000</td>
</tr>
<tr>
<td></td>
<td>Art</td>
<td>2725</td>
<td>SF</td>
<td>$75.00</td>
<td>$204,375</td>
</tr>
<tr>
<td></td>
<td>Practical Nursing</td>
<td>2740</td>
<td>SF</td>
<td>$75.00</td>
<td>$205,500</td>
</tr>
<tr>
<td></td>
<td>Nursing Ass. & Lounge</td>
<td>1950</td>
<td>SF</td>
<td>$50.00</td>
<td>$97,500</td>
</tr>
<tr>
<td>Restrooms (New)</td>
<td>EA</td>
<td>2</td>
<td></td>
<td>$100,000.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>Restrooms (Existing)</td>
<td></td>
<td>750</td>
<td>SF</td>
<td>$250.00</td>
<td>$187,500</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$1,117,500</td>
</tr>
<tr>
<td>2 New Addition</td>
<td>Addition</td>
<td>570</td>
<td>SF</td>
<td>$500.00</td>
<td>$2,850,000</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$3,665,000</td>
</tr>
<tr>
<td>3 New Storefront Punched Openings to North Side of Bookstore</td>
<td></td>
<td>58</td>
<td>LF</td>
<td>$1,140.00</td>
<td>$66,120</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$98,720</td>
</tr>
<tr>
<td>4 Add 2-Stop Elevator</td>
<td>Foundation</td>
<td>1</td>
<td>LOT</td>
<td>$25,000.00</td>
<td>$25,000</td>
</tr>
<tr>
<td></td>
<td>Shaft</td>
<td>1</td>
<td>LOT</td>
<td>$75,000.00</td>
<td>$75,000</td>
</tr>
<tr>
<td></td>
<td>Penthouse</td>
<td>1</td>
<td>LOT</td>
<td>$45,000.00</td>
<td>$45,000</td>
</tr>
<tr>
<td></td>
<td>2-Stop Car</td>
<td>2</td>
<td>STOP</td>
<td>$45,000.00</td>
<td>$90,000</td>
</tr>
<tr>
<td></td>
<td>MEP Requirements</td>
<td>1</td>
<td>LOT</td>
<td>$10,000.00</td>
<td>$10,000</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$245,000</td>
</tr>
<tr>
<td>5 Circulation, Offices, & Storage</td>
<td>New Ceilings and Lighting - Circulation</td>
<td>4500</td>
<td>SF</td>
<td>$30.00</td>
<td>$135,000</td>
</tr>
<tr>
<td></td>
<td>New Ceilings and Lighting - Offices</td>
<td>175</td>
<td>SF</td>
<td>$30.00</td>
<td>$5,250</td>
</tr>
<tr>
<td></td>
<td>New Ceilings and Lighting - Storage</td>
<td>240</td>
<td>SF</td>
<td>$30.00</td>
<td>$7,200</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$148,550</td>
</tr>
<tr>
<td>6 New Ramp</td>
<td>Demo Existing and Provide New</td>
<td>1</td>
<td>LOT</td>
<td>$75,000.00</td>
<td>$75,000</td>
</tr>
<tr>
<td></td>
<td>Section Total</td>
<td></td>
<td></td>
<td></td>
<td>$76,000</td>
</tr>
<tr>
<td></td>
<td>SUB-TOTAL SECTIONS</td>
<td></td>
<td></td>
<td></td>
<td>$4,337,570</td>
</tr>
</tbody>
</table>

Alternate

<table>
<thead>
<tr>
<th>Architectural Description</th>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Option #1 (Add)</td>
<td>Demo Tiered Classroom & Renovate</td>
<td>1270</td>
<td>SF</td>
<td>$110.00</td>
<td>$139,700</td>
</tr>
<tr>
<td></td>
<td>OPTION #1 TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$139,700</td>
</tr>
<tr>
<td></td>
<td>SUB-TOTAL OPTION #1</td>
<td></td>
<td></td>
<td></td>
<td>$139,700</td>
</tr>
<tr>
<td></td>
<td>Building Permit, Plan Check Fee & State Surcharge</td>
<td>1.00%</td>
<td></td>
<td>$1,897</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Contractor Bonds</td>
<td>2.00%</td>
<td></td>
<td>$1,822</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Contingency</td>
<td>10.00%</td>
<td></td>
<td>$14,392</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Contingency</td>
<td>10.00%</td>
<td></td>
<td>$15,831</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Temp. Facilities & Controls</td>
<td>2.00%</td>
<td></td>
<td>$3,483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM’s OPE (Direct Personnel Expense)</td>
<td>3.50%</td>
<td></td>
<td>$6,217</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM’s Insurance & Fee</td>
<td>3.00%</td>
<td></td>
<td>$5,515</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCHITECTURAL TOTAL OPTION #1</td>
<td></td>
<td></td>
<td></td>
<td>$189,357</td>
</tr>
</tbody>
</table>

Alternate

<table>
<thead>
<tr>
<th>Architectural Description</th>
<th>Scope</th>
<th>Qty</th>
<th>Unit</th>
<th>$/Unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Option #2 (Add)</td>
<td>Decommission and Remove Existing Elevator</td>
<td>1</td>
<td>LOT</td>
<td>$100,000.00</td>
<td>$100,000</td>
</tr>
<tr>
<td></td>
<td>OPTION #2 TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$100,000</td>
</tr>
<tr>
<td></td>
<td>SUB-TOTAL OPTION #2</td>
<td></td>
<td></td>
<td></td>
<td>$100,000</td>
</tr>
<tr>
<td></td>
<td>Building Permit, Plan Check Fee & State Surcharge</td>
<td>1.00%</td>
<td></td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime Contractor Bonds</td>
<td>2.00%</td>
<td></td>
<td>$2,020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Contingency</td>
<td>10.00%</td>
<td></td>
<td>$10,302</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Contingency</td>
<td>10.00%</td>
<td></td>
<td>$11,332</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Temp. Facilities & Controls</td>
<td>2.00%</td>
<td></td>
<td>$2,493</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM’s OPE (Direct Personnel Expense)</td>
<td>3.50%</td>
<td></td>
<td>$4,450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM’s Insurance & Fee</td>
<td>3.00%</td>
<td></td>
<td>$3,948</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCHITECTURAL TOTAL OPTION #2</td>
<td></td>
<td></td>
<td></td>
<td>$135,545</td>
</tr>
<tr>
<td>Mechanical Description</td>
<td>Scope</td>
<td>Qty.</td>
<td>Unit</td>
<td>$/Unit</td>
<td>Sub-Total</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>1 HVAC Improvements to Existing Space</td>
<td>HVAC</td>
<td>28400</td>
<td>GSF</td>
<td>$30.00</td>
<td>$852,000</td>
</tr>
<tr>
<td>2 New Fire Suppression Systems</td>
<td>New Service</td>
<td>28400</td>
<td>GSF</td>
<td>$7.50</td>
<td>$213,000</td>
</tr>
<tr>
<td></td>
<td>New 6" Watermain</td>
<td>1</td>
<td>ALLOW</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Section Total $1,090,000</td>
</tr>
</tbody>
</table>

FINANCIAL INFORMATION
SCHEDULE AND PHASING SUMMARY

Student Success and Support Modernization

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds Available</td>
<td>July 2020</td>
</tr>
<tr>
<td>RFP/ A/E firm selected</td>
<td>July- August 2020</td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>September- November 2020</td>
</tr>
<tr>
<td>DD</td>
<td>December 2020- January 2021</td>
</tr>
<tr>
<td>CD</td>
<td>February- March 2021</td>
</tr>
<tr>
<td>Bid</td>
<td>April 2021</td>
</tr>
<tr>
<td>Construction</td>
<td>May 2021- April 2022 (12 month duration)</td>
</tr>
<tr>
<td>Move in</td>
<td>Summer 2022</td>
</tr>
<tr>
<td>All building and site work completed for Fall 2022 Semester</td>
<td></td>
</tr>
<tr>
<td>Backes to remain occupied during construction</td>
<td></td>
</tr>
<tr>
<td>Davies temporary locations for Nursing and Art in Administration or Dailey; Admin building also to be used as swing space for Backes.</td>
<td></td>
</tr>
</tbody>
</table>

Student Center (Work by others completed prior to Pre- Design project)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predesign Complete</td>
<td>Fall/ Winter 2018</td>
</tr>
<tr>
<td>A/E firm selected</td>
<td>December 2018</td>
</tr>
<tr>
<td>Design/ Bid</td>
<td>January- September 2019 (9 month duration)</td>
</tr>
<tr>
<td>Construction</td>
<td>October 2019- June 2020 (9 month duration)</td>
</tr>
</tbody>
</table>

(includes schematic design of Davies Hall)

(Includes bookstore & game tables moving out of Backes)
DESIGN OPTIONS CONSIDERED BUT NOT PURSUED

SITE OPTION

OPTION 2 (LARGE)

- Removes the road through the center of campus to make the campus more pedestrian friendly and relocates the roads to the perimeter.
- More substantial change to south side of campus with a big “green welcome mat”
- Removes parking on the south side of the Mullins facade and in a future phase splits the parking lots, allowing for visual connections to campus spine/landmark.
- Adds a node at the end of the “Pedestrian Spine” of campus.
- Infills green space when the Administration Building and parking lot are removed.
2.3 Campus Use

Academic Building Usage

- **Option 2**
 - **PLAZA/COURTYARD**
 - **GREEN SPACE**
 - **PARKING**
 - **VEHICULAR CIRCULATION**
 - **PEDESTRIAN CIRCULATION**

PLAZA SPACE
- Opportunity for campus gathering space outside the Library & Davies Hall

WELCOME WALK
- Opportunity for larger, ceremonial walk from west parking to Backes Student Center

GREEN BUFFER
- Remove parking and replace with green buffer along Mullins Hall

LANDMARK/NODE
- Opportunity for campus landmark that incorporates wayfinding into unique character of ICC

PARKING
- Expand southeast lot, move Wenger Hall lot south

WELCOME MAT
- Split parking lots leaving central “Green Welcome Mat” extending from central spine of campus to roundabout
SITE OPTION CONSIDERED
ENTRY COURT: LARGE

CAMPUS MONUMENTS

BIKE RACKS
- Provide green buffer around bike racks

SEATING SPACES
- Benches placed within planting area, enhanced paving

PLANT BEDS
- Flank both sides of sidewalk with plants that offer year round interest

CRITICAL VIEW

MEADOW

PLAZA

BACKES

MULLINS
SITE OPTION CONSIDERED
SOUTH ENTRANCE: LARGE

- LANDSCAPE SCREENING
 - Add overstory shade trees, shrubs and perennials

- PARKING LOT
 - Screen with shrubs and shade trees, typ.

- CELEBRATION WALK
 - Space for Athletic, Campus notable achievements

- SOUTH ENTRY PLAZA
 - Enhanced paving, planting, and seating

- WELCOME & WAYFINDING SIGN

- WENGER HALL

- MULLINS

- ADDITION

- CRITICAL VIEW

- PARKING LOT

- WELCOME/WAYFINDING SIGN
DESIGN OPTIONS CONSIDERED BUT NOT PURSUED

During the predesign process, several buildings were considered to be included in the scope of work.

- Davies Hall
- Backes Hall
- Mullins Hall
- Wilson Hall
- Dailey Hall

There were also a series of options within each building for the level of renovation planned. The following pages detail alternate options considered.

Ultimately the schemes selected for Davies and Backes Halls best supported ICC campus and MinnState system project goals and aligned with project budget.
BACKES- OPTIONS CONSIDERED

OPTION 1 (MEDIUM)

Key Features:
- Administration suite (Provost, Foundation Office, NHED Office) located on 1st floor by entry.
- Bookstore relocated to Davies and space infilled with offices.
- Maintain large lower level conference room.
- New flexible meeting/dining space on the upper level.
BACKES- OPTIONS CONSIDERED

OPTION 2 (LARGE)

Key Features:

- New Administration suite (Provost, Foundation Office, NHED Office) located on upper floor. Potentially infill new floor over entry.
- Bookstore remains in Backes.
- Optional new small meeting room adjacent to entry.
BACKES- OPTIONS CONSIDERED

OPTION 3 (SMALL)

Key Features:

- Ramps stay, no new elevator/stair
BACKES- OPTIONS CONSIDERED

OPTION 4 (LARGE)

Key Features:
- Ramps removed, new stair and elevator
- Meeting room option at mezzanine level
DAVIES- OPTIONS CONSIDERED

OPTION 1 (MED)

Key Features:

- Relocate & right-size all nursing labs, classroom, and nursing community lounge to 2nd floor.
- Relocate bookstore from Backes to Davies; add outdoor equipment rental. Bookstore is now part of central student hub.
- Space allocated for a veteran’s office and student government office. These offices are adjacent to the student union.
Engineering Concept Lab moves to new location
Classes in music room move to flexible classroom in another building

Davies: First Level Option 1

Davies: Second Level Option 1
DAVIES- OPTIONS CONSIDERED

OPTION 2 (MED)

Key Features:
- Engineering Concept lab remains in Davies in a larger, accessible space.
- Practical Nursing program, including faculty offices relocated & right-sized on 2nd floor. Nursing assistant lab is relocated to the 1st floor.
Classes in music room move to flexible classroom in another building.
DAVIES- OPTIONS CONSIDERED

OPTION 3 (MED)

Key Features:

- Engineering Concept lab remains in Davies in a larger, accessible space.
- Practical Nursing program, including faculty offices relocated & right-sized on 2nd floor. Nursing assistant lab is relocated to the 1st floor.
Classes in music room move to flexible classroom in another building.
FAST FACTS

GSF: 31,243 s.f.
1st Level: 21,997 s.f.
2nd level: 9,246 s.f.
Area of Renovation/ Renewal
4,375 s.f.

Cost Replacement Value ($000’s):
$11,105

Building Repair Backlog ($000’s):
$2,599
(Additional $494 due by 2020)

Facilities Condition Index (FCI):
.23

- The Gym is well utilized throughout the year.
- Locker rooms and showers are outdated, lack accessible fixtures, and lack training rooms for both men and women.
- HVAC system needs to be updated
- Building does not have sprinkler system
BUILDING PLAN: MULLINS HALL- 1ST FLOOR

Size:
1st Level: 21,997 s.f.
2nd level: 9,246 s.f.
GSF: 31,243 s.f.
Wrestling
This room is larger than what the wrestling team needs and is unused outside of wrestling season.

Gym
The Gym is well utilized throughout the year and houses multiple functions for Athletics.

Restroom
Men’s and Women’s restrooms have accessibility issues with numerous wear and tear damages on many surfaces and fixtures.

Men’s Shower/Locker Room
Some showers seem to be updated while most are dated.

Railings
Railings on the east and west stairwells are not to code.

Women’s Locker Room
Women’s locker room space seems to be in the process of being updated.
MULLINS HALL

Entry Lobby
The entrance lobby could use better wayfinding as well as better display area for award trophies/plaques.

Concessions
This room is sufficient for its function but is located upstairs and is inconvenient.

Activities Storage
This storage space is well used but does not have sufficient accessibility. Moving equipment is challenging.

Fitness Room
The size of the space is appropriate but is not very welcoming. Needs more natural light.

Pantry
Well utilized room and was requested to be placed in an area that is not too public to preserve confidentiality.

Work Room
This room does not seem to be a proper work room but is being used by staff as one.
Mullins Hall - 4” Sanitary sewer service connection
The existing sanitary sewer shown on the original design documents is a 4” cast iron pipe that connects to a 6” vitrified clay pipe five feet outside of the building foundation. This sewer is connected along the east side of the north wing of the building that drains to an onsite 6” sanitary sewer which drains to the south. The proposed project does not include any civil site sanitary sewer improvements and will not impact the existing site sanitary sewer.

Mullins Hall - 4” Water service connection
The existing water service connection to the building is a 4” ductile iron pipe that is connected on the north side of the northwest wing of the building. The service connects to a 6” watermain that runs north-south on the northeast side of the building. There is an existing fire hydrant on the northeast side of the building that connects to a 6” pipe watermain that runs north-south through campus. A new 6” ductile iron pipe fire protection watermain is proposed for the proposed project. It is anticipated that this connection will be made on the north side of the northeast wing of the building adjacent to the existing water service due to the proximity to the existing 6” watermain running north-south.
Mullins Hall - 8” & 6” Storm sewer connection
The existing storm sewer shown on the original design documents is an 8” cast iron pipe connected along the south side of the west building wing. This storm sewer connects to an 8” vitrified clay pipe storm sewer which drains to the south. Additionally, there is a 6” PVC drain tile pipe along the south side of the east addition of the building that connects to the 8” PVC storm main that drains to the southwest. The proposed project does not include any civil site storm sewer improvements and will not impact the existing site storm sewer.

Mullins Hall - Gas service connection
The existing gas service shown on the original design documents is on the north side of the northwest wing of the building. This service connects to the main to the northeast side of the building which runs north-south through campus. The proposed project does not include any gas service improvements and will not impact the existing gas main.
Mullins Hall - Electrical connections
There are existing telecommunications and electrical lines adjacent to the north-west corner of the building. These lines will not be impacted by the proposed project. See Electrical Narrative for further information.

Electrical and telecommunication location

Mullins Hall Structural Scope Items:

- Accommodate new minor openings for mechanical and electrical systems

Mullins Hall is an existing two story building with a steel joist and structural steel framed roof supporting lightweight precast concrete roof slabs, one structural floor, and a cast-in-place, non-structural grade-supported slab. The existing structural floor system consists of precast concrete plank with a topping (both structural and non-structural) that is supported on both masonry and cast-in-place concrete walls as well as steel beams. The typical plank is 8” plus topping (2” typical). Existing foundations consist of conventional cast-in-place concrete footings bearing on soil.

Installation of new vertical openings through the floor for mechanical systems will need to be carefully coordinated with the location and span direction of individual structural members (floor plank) to avoid damaging the structure and incurring significant reinforcing or reframing costs. For example, the long dimension of new openings must be parallel to the member span and the narrow dimension minimized to avoid significant reduction in structural capacity. Installation of new vertical openings through the roof should be relatively straightforward provided the size of the required opening does not overlap existing primary framing members (joists or beams). Installation of horizontal openings through walls can generally be accommodated with minimal reinforcing. New underground utilities will need to be coordinated with adjacent footing elevations but should not pose significant structural challenges.
MECHANICAL

Div 21: Sprinkler
Currently the building does not have a fire sprinkler system.

Div 22:
The major source of plumbing work in the building will happen in the main level locker rooms. The plumbing is in need of a full upgrade, and all sanitary, water and vent need to be upgraded. All piping will need to meet current MN Plumbing Codes, and MNSCU design standards.

Domestic water heating needs be upgraded. The current water heater is a single walled heat exchanger with a 1000 gallon storage tank that does not have a thermostatic mixing valve. It does not meet current codes and needs to be upgraded.

Div 23: HVAC:
We are unsure if there is asbestos in this building & needs to be investigated

Overall, the HVAC systems throughout the building need to be upgraded. Although the gym ventilation is adequate, there are still improvements to be made. There are two major time period of construction, 1970 and 1988.

The 1970 construction has 2 air handling units (15,000 cfm each) that provide air to the gym, along with one AHU (3000 cfm) that supply's classrooms M201/M202. The AHU's have hot water heating coils without glycol, and need to be replaced due to their age and lack of glycol. Currently none of the units have cooling.

The 1988 areas are a combination of items that need to be upgraded. The office area only has hot water radiation around the perimeter and no ventilation or cooling. This does not meet current code and needs to be upgraded/replaced. The multipurpose and weight rooms each have a small AHU that have a hot water coil and no cooling.

The locker rooms have non-code compliant and inadequate ventilation and exhaust. Currently the building is served from the campus hot water boiler plant. The heating mains do NOT have glycol installed, and the fresh air coils in the building are susceptible to freezing. A glycol heat exchanger will need to be added to protect the fresh air coils in the building.

The ventilation system for the locker rooms needs to be replaced.

There currently is no ventilation on the upper level to the offices, and this needs to be addressed with a variable air volume (VAV) air handling system.

B3 and SB2030 requirements will need to be followed for the design of the building.
Need to address new mechanical layouts – verify on site visit

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Current controls throughout the building are almost entirely pneumatic.
ELECTRICAL

Div 26: Electrical
New LED lighting and automatic lighting controls will be added throughout. Branch circuit panels and electrical service gear to be replaced with new.

Div 27: Communications
Fiber optic service to the facility is up to date.

TECHNOLOGY

Div 28: Electronic Safety and Security
The current fire alarm system is outdated. Exterior doors should be refit without electric hardware and card readers.

Campus video surveillance system is modern. Cameras locations will be updated corresponding with renovations.
MULLINS- OPTIONS CONSIDERED

OPTION 1 (SMALL)

Key Features:
- Reconfiguring spaces within their existing footprint.
- Wrestling gym reconfigured with new entry & lobby.
- Fitness Room and weight room both located on lower level.
- Wrestling room relocated to 2nd floor.
- Coaching Offices and public restrooms to remain in place with renovations.
Mullins: First Level Option 1

Mullins: Upper Level Option 1

Itasca Community College | Predesign for Student Support and Success Modernization

BENTZ THOMPSON RIE TOW 105
MULLINS- OPTIONS CONSIDERED

OPTION 2 (LARGE)
Key Features:
- Wrestling gym reconfigured with new entry & lobby, public restrooms, concessions, & coaches’ offices.
- Fitness Room and weight room both located on upper level. New structural floor added for weight room.
- Wrestling room relocated to 2nd floor.
MULLINS- OPTIONS CONSIDERED

OPTION 3 (MED/LARGE)

Key Features:

- New addition to West with entry & lobby.
- Fitness Room and weight room co-located on 1st floor.
- Wrestling room located on upper level. New structural floor added for room expansion.
- Coaching Offices and public restrooms to remain in place with renovations.
PROJECT DESCRIPTION

A. MULLINS

Affected Programs:
- Athletics (Men’s Baseball, Men’s & Women’s Basketball, Men’s Football, Men’s Wrestling, Women’s Softball, Women’s Volleyball)
- Physical Education

Project Goals:
- Reconfigure locker rooms for accessibility, separate team/daily use spaces, and private showers.
- Create spaces that better support student athletes and are welcoming to non-athletes/staff.
MULLINS PROGRAM

Men’s Locker Room
- Athletics Lockers- qty 77
- Daily Use Lockers- qty 30-35
- Moveable Wood Benches
- Athletics Team Room
- Storage
- Private Shower Stalls: 4
- Toilets: 3
- Urinals: 3
- Sinks: 3

Women’s Locker Room
- Athletics Lockers- qty 59
- Daily Use Lockers- qty 45-50
- Moveable Wood Benches
- Athletics Team Room
- Storage
- Private Shower Stalls: 4
- Toilets: 4
- Sinks: 3

Shared Support Spaces
- Training Room (with access from both Men’s & Women’s Locker rooms)
 - hot/cold soaking tubs
 - ice maker
 - (3) training tables
 - lockable storage
 - sink
- Laundry Room
 - commercial washer & dryer- use existing
 - lockable storage for athletic uniforms/equipment
 - utility sink
- Janitor Closet
MULLINS

Key Program Features:

- Accessible toilets & showers
- Reconfiguring existing group showers to private showers
- Shared men’s and women’s training room.

MECHANICAL

Div 21: Sprinkler
Not in scope of project- adding fire suppression will be deferred to future HEAPRR funds.

Div 22:
The major source of plumbing work in the building will happen in the main level locker rooms. The plumbing is in need of a full upgrade, and all sanitary, water and vent need to be upgraded. All piping will need to meet current MN Plumbing Codes, and MNSCU design standards.

- Water Closets will be wall hung, low flow - 1 GPF, with sensor flush valves.
- Urinals will be low wall hung, low flow with sensor flush valves.
- Lavatories will be countertop (undermount or integral to be determined) with manual faucets (manual faucets at a minimum in the Men’s locker room to accommodate hot water for shaving. Sensor style could be used in the Women’s if desired)
- Showers will be a manual faucet, with thermostatic mixing valves

Domestic water heating needs be upgraded. The current water heater is a single walled heat exchanger with a 1000-gallon storage tank that does not have a thermostatic mixing valve. It does not meet current codes and needs to be upgraded. New, gas fired domestic water heaters should be installed, with water heated to 140 deg F, and then mixed down with a building wide thermostatic mixing valve.

Div 23: HVAC:
The HVAC systems throughout the building need to be upgraded, however this scope will be deferred to future HEAPRR funds. Only minimum modifications to meet code in the locker rooms are included as part of this project.

ELECTRICAL

New LED lighting and automatic controls will be added to the modified areas.
Dailey hall currently houses classrooms, offices, and the campus facility staff.

Facility staff storage will relocate to the classrooms being taken offline in Davies.

The engineering concept plan will relocate to the facility staff area.

No fire suppression

New HVAC system required for classrooms.
Restrooms Facility Staff
Classrooms Not in Project Scope
Windows in poor condition

Dailey Hall Project Scope
offices & labs renovated 2013

BUILDING PLAN: DAILEY HALL
Size: 11,455 SF
DAILEY HALL

Classroom
The classrooms meet space needs, however ventilation is poor and windows need to be replaced.

Facility Staff
Facility staff area includes a shared office, lounge, and workshop with garage doors. The space functions well, however it could be located in another area on campus.
MECHANICAL

Div 21: Sprinkler
Currently the building does not have a fire sprinkler system.

Div 23: HVAC:
A portion of the building had the HVAC upgraded in 2013/2014. The remainder of the building will require new HVAC systems. The existing fin tube radiation in the building will remain, but all of the ventilation system for the remodeled portion will be replaced/upgraded.

Div 25: Temperature Controls
The building controls need to be upgraded to match the campus wide DDC controls. Current controls throughout the building are a mixture of DDC and pneumatic.
CIVIL BACKGROUND

A site survey has not yet been completed for the project. A Gopher One Call utility design locate has been completed. The civil engineering narrative utilized the following sources of information for the analysis of the site infrastructure:

1. Itasca Community College Site layout dated September 28, 2011
2. Administration Building Mechanical engineering design documents prepared by Jacus and Amble, Inc. dated June 6, 1966
3. Backes Student Center Mechanical and Electrical engineering design documents prepared by Gausman & Moore dated May 22, 1986
4. Davies Hall Mechanical Architectural and Mechanical engineering design documents prepared by Architectural Resources Inc. dated September 14, 1973
6. Mullins Hall Architectural design documents prepared by Sandberg Michelson Team dated December 1, 1986
7. Mullins Hall Mechanical engineering design documents prepared by Gausman & Moore dated May 22, 1986
8. Itasca Community College Site Layout dated September 28, 2011

STRUCTURAL BACKGROUND

Governing Codes

Minnesota State Building Code (MSBC) 2015
International Building Code (IBC) 2012
ASCE 7-10
Minnesota State Colleges and Universities (MnSCU) Current Design Standards

Structural Design Criteria

Risk Category: II as defined by ASCE 7-10 Table 1.5-1
Is = 1.0 and Iw = 1.0

Roof Snow Load: 42 psf plus required increase for drifted snow load and mechanical equipment

Classrooms: 40 psf
Stairs and Lobbies: 100 psf
Corridors at first floor: 100 psf
Corridors above first floor: 80 psf
Mechanical Rooms: 125 psf or weight of equipment, whichever is greater
Stages and Platforms: 125 psf
Ceiling and Mechanical: 10 psf, typical
Wind: 115 mph Ultimate Wind Speed, Exposure C
Seismic: No Seismic Design Required per the MSBC

Materials

Cast-in-Place Concrete: 3,000 psi at 28 days: Footings and masonry core fill
(Normal Weight, U.N.O.) 4,000 psi at 28 days: All other concrete, U.N.O.
Masonry:
\[f_m = 2,000 \text{ psi}\]

Reinforcing Steel:
- ASTM A615, Grade 60
- ASTM A775, Grade 60 Epoxy Coated Reinforcing Steel at all exterior slabs and stoop slabs that are exposed to deicing salts and all pool area slabs

Structural Steel:
- Wide flange shapes: ASTM A992 or A572, Grade 50 unless noted otherwise

Tube Sections:
- ASTM A500, Grade B

Pipe Sections:
- ASTM A53, Grade B

Channels, Angles, Plates:
- ASTM A36

Anchor Rods:
- ASTM A36

Connection Bolts:
- ASTM A325, Type N (bearing bolts)

Typical Metal Floor Deck:
- 1-1/2” deep, 20 gage galvanized composite deck

Typical Metal Roof Deck:
- 1-1/2” deep, 20 gage galvanized wide rib roof deck

Live Load Deflection Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor and Roof Framing</td>
<td>Total Load = span/360, Live Load = span/480 (typical)</td>
</tr>
<tr>
<td>Exterior Brick Support</td>
<td>Span/600 vertical</td>
</tr>
<tr>
<td>Lateral Drift of Building</td>
<td>Height/500 (for entire building and each floor to floor)</td>
</tr>
</tbody>
</table>
A meeting was held on July 5, 2018 at Itasca Community College to kick-off the project. Existing building conditions, program, and preliminary space use diagrams were discussed.

At the start of the meeting, all stakeholders introduced themselves/their role at the college and goals/comments for the project.

- Becky Bourquin (Student Services, One-Stop): clear flow for students, improved signage, modernization of Backes
- Jane Chamberlin (Business Office): Does not see students very often - location is flexible
- Cricket Guyer (Admin. assistant): Main entrance is lacking to campus, furnishings update, gathering spots for students
- Bart Johnson (Provost): Highlight learning communities, improved campus arrival
- Ann Vidovic (Access/Disability services): Improve building accessibility, Trio program in Backes works well - cluster services
- Lynette Howe (Practical Nursing): Davies classrooms are awkward shape (long and narrow) and HVAC is very noisy, need private offices
- Darla Nelson (Student Services): Entry point, student gathering space, adjacencies between groups - best use of space
- Chad Haatvedt (Facilities Manager): Improve/replace HVAC, accessible restrooms, improve space utilization, connect to and support student union project
- Justin Lamppa (Men’s Athletic Director): Fitness center to be open/welcoming to all students, need more storage for sports teams.
- Jill Murray (Industrial Tech): Engineering concept lab
- Susan Lynch (ICC Foundation): Gathering space for students, modernizing of entire campus, improve look of Mullins
- Renee (Nursing Faculty; Chair of Faculty Facilities Committee): Importance of theater - students study there, update bathrooms
- Faith McBride (Bookstore): Bookstore location, update restrooms, Cashier function and proximity to business office
- Rick Kangas (Dean of Students): Enhancing student and employee experience, improved signage

Project Schedule:
- The 50% Predesign document will be submitted end of July.
- 95% document is due Sept. 1

There is a district (Northern schools under Bill Maki) initiative to add fire protection through HEAPR. However, due to the extent of remodeling planned, it may make more sense to include this scope of work with predesign project.
Site
- Roundabout: Staff expressed that many find use of the roundabout confusing and it was asked if it can be removed.
- CFP site framework plans were reviewed and further revision may be needed. This site plan reorients campus entry & parking to the south. However, it was noted that the entry from the West is still important.
- BTR/DF discussed site plan ideas about connecting the south entry to the library clock tower and creating an outdoor plaza space in front of Backes. It was noted that students are on campus during mainly winter months and that the tunnels get high use. This should be considered with site/ circulation design.
- It is important to have an easy to find, convenient public/visitor parking area.

Mullins
- Locker room improvements, similar to previous predesign should be part of project scope. Improvements address accessibility, change group showers to private showers, create separate locker areas for teams and daily gym users, and create a shared laundry and trainer’s room.
- Work is planned for later this year to expand single unisex toilet on the first floor and make it ADA accessible.
- The wrestling room is used for 3 hours/day Jan-February for the Wrestling team. The childcare center also uses the space as an indoor kid’s play area. Though this room is underutilized there was concern with adding the wrestling program to the gym. If the wrestling program were to use the gym, the gym would be in use 10 hours a day for 5 teams and non-student athletes would not have access to the gym.
- The upstairs lobby is not used.
- The fitness center is used by both student athletes and non-student athletes, however the space is not very inviting. A more inviting space with windows is desired. Currently the fitness center is located on the second floor while the weights are located on the first floor. It would be ideal for these spaces to be adjacent as student athletes use both spaces during practice. The football team also uses the hallways to lift weights and this can be intimidating to non-student athletes. The weight room was not successful being located on the 2nd floor in the past due to weights being dropped on the floor causing floor cracking.
- The coaching staff offices can be consolidated into a smaller footprint. Shared offices should be further reviewed.
- Mullins is mainly used on evenings and weekends.
- Storage is important.
- The food pantry is currently located here, though it could be relocated. It works fairly well in its current location. It is preferred to keep the pantry in a more private location. Often students will ask for access to the pantry after hours.
- It was noted that early childhood tenants located adjacent to Mullins plan to move out in 3 years. This building has a lot of deferred maintenance and it was unclear how this space is planned to be used.
- Staff was receptive to plan that relocated the entrance/bathrooms/food to the wrestling gym, however the location of the wrestling program will need to be further studied.

Backes
- As part of the student center predesign, the gaming tables will be relocated to an addition between Davies and the Media Center.
- Other possible programs to relocate to Davies include: Bookstore and Dining Services.
BENTZ THOMPSON RIETOW

- Primary function of Backes is to house the One-stop services and admin. Bookstore is secondary program space if it stays in this building. Student seating/lounge space is not a priority for this building as this program is planned for the new student center project.
- Currently conference space is tight and more conference rooms are desired. Large groups gather in the dining area.
- One-stop takes a high volume of calls and there are some staffing constraints to consider where reworking the space.
- Bookstore- The bookstore needs to be in an accessible location, however it is not desired for it to be front and center. The bookstore currently closes at 2 and there are long lines at rush time.
- Bathrooms do not need to be at front of building.
- Wayfinding needs to be improved.
- It was asked if a larger 2nd floor could be added. BTR to review.
- The Dining area for students only need be 1/3 of the current size for regular use.
- Consider how to keep existing artwork in Backes as decommissioning art work is a difficult process.

Davies

- Davies has classrooms for nursing, art, music, process engineering, and (2) ITV classrooms.
- Due to underutilized spaces and lack of accessibility to half levels, there is the opportunity to consolidate programs and repurpose spaces. There is an elevator, but it is tiny and unreliable.
- The art room currently has both a ceramics space and general arts studio space. Art lectures are held in the music room due to dust from ceramics. Ceramics will be held in the fall with no future plans for more classes. The current art room is adjacent to the new student union project. There is an opportunity to relocate program here that supports this project such as the bookstore or kitchen/dining and relocate a smaller art room elsewhere in Davies.
- The music room is a tiered classroom on a half level and is underutilized. The room is not accessible and does not need to be tiered as it's used as general purpose classroom. Music classes do not include playing instruments.
- The biggest program in Davies is Nursing. There is the practical nursing program and nursing assistant programs. Classrooms/labs are located on both levels with a set of private offices for nursing faculty and a student nursing lounge. Noisy HVAC in current classrooms make lectures difficult. Some of the rooms are also long and skinny and not ideal for teaching. It is desired for all nursing classroom space to be on one level.
- There are currently (2) ITV classrooms for general use. These 2 rooms have different technology, but will most likely be updated. They need to stay in this building, however they can be made smaller.
- The computer lab is oversized and underutilized.
- There are (2) tenant offices on the second floor for customized training. It is important for these individuals to have office space on campus, but it does not need to be in Davies.
- The engineering concept lab is located in half level adjacent to the stage. This space is full of machines and equipment tightly packed together and a larger space is desired. The space is not accessible. The lab is a noisy space and can be distracting to those trying to study close by. Ideally, the engineering concept lab and engineering process lab would be co-located. The engineering process lab is currently located in Daily. Confirm with ICC.
- Staff feel the theater & stage space is important to maintain on campus for the potential of future programs. Upgrades to lights and sound are needed.
- There is existing fire main for Davies that services the stage and engineering shop.

Additional Comments
• Need veteran space on campus. This could be a shared office/ flexible workspace, as this person is on campus 1 day per week.
• Student club space/ storage is desired.
• Would like a workforce center on campus.

After the meeting, BTR toured the buildings with Chad and a few more ideas were discussed.
• Due to accessibility of the half levels in Davies where the music room and engineering process lab are currently located and the cost associated with making them accessibility, it was discussed that theses spaces could be designated as storage only instead of for use by students.
MEETING MINUTES

Rightsizing and HVAC Renovations Pre-design Phone Interviews
Itasca Community College
BTR Commission No. 1846

From: Jessica Kraft AIA
Date: July 23, 2018

Phones interviews were conducted with the art and practical nursing faculty

Mick Reasor, Art

Mick teaches 2D studio art, design class and art appreciation.

Art Appreciation is currently taught in the Music Classroom in Davies.
- This room works well because it is a lecture room setup. Lighting is ideal as it dark enough to project images, but light enough (from wall sconces) for students to take notes. The room also has blackboards.
- Enrollment for the class is set at 40 students and it is currently taught in the Summer and Fall. The music classroom is mainly used for this class and occasionally 1 other class is located here.
- However room is not accessible as it is located on a half level up and elevator is both too small and unreliable.

The art studio space is currently split into 2 spaces- Ceramics and 2D art.
- Ceramics will be taught Fall 2018, but has been cancelled starting spring 2018. This course is taught by a part-time Ceramics teacher.
- 2D art space is cramped. Course enrollment is set at 24 students and is usually full. The studio needs to have space for visual presentation, demonstration by faculty, student practice space, student pin-up space and student/faculty storage.

Art Office- (1) office is required. Current office is too small, in ill repair, and noisy due to location next to mechanical room. Currently the office is used mostly for storage due to condition.

Occasionally, the Davies lobby is used as exhibition space.

Lighting control is critical to both lecture and studio space.

Lynette How, Practical Nursing

Lynette is the Director of the Practical Nursing Program. Practical nursing requires a classroom and lab; 5 faculty offices and workroom, and student lounge. The nursing assistant program requires a lab and faculty office.

Practical Nursing
• The current classroom located on the first floor is long and narrow and does not function well. Enrollment is set at 40 students and space is needed for demonstrations and lecture.
• The practical nursing lab is also long and narrow and located on the second floor. This room has 6 beds and needs table/counter space for laptops and other equipment. At this time no simulation/control rooms are required for the technology used.
• Both spaces have noisy HVAC.
• It would be nice for these two rooms to be adjacent.
• Currently, the computer lab is used for testing, however students have laptops and could do testing in the classroom or lab with their own computers.

Nursing assistant program has one lab on the second floor with an attached storage room. BTR to reach out to Heidi for further information. The feasibility of nursing assistant and practical nursing sharing space was discussed. However, courses for both programs are currently scheduled during the same times. Nursing assistant has 2 week courses everyday from 8:30-4:40, while practical nursing has semester long courses.

The nursing community lounge should have a kitchenette and study space. Currently due to its location, items for the classroom are stored there due to lack of storage/space in the classroom.

Nursing faculty prefer enclosed offices due to concerns of student privacy. They also need secure file storage and workroom/meeting room.

In addition to nursing, we talked about the theater and study seating. The theater gets booked for community events and the lobby furniture, though well used by all students is dated and could use a refresh.
MEETING MINUTES

Rightsizing and HVAC Renovations Predesign
Itasca Community College
BTR Commission No. 1846

From: Jessica Kraft AIA
Date: July 23, 2018

There was a go to meeting with Bart and Chad to review initial programming diagrams for all of the buildings.

Mullins
- Bart questioned whether the elevator meets ADA accessibility. BTR to review.
- It was noted that ICC tried to relocate weights to the 2nd floor, however due to dynamic loading, cracks in the floor occurred. Once this program was moved back to the 1st floor, no more problems were observed. If weights are relocated to the 2nd floor, the structure will need to be reviewed.
- Bart asked if the storage room adjacent to the current fitness room could be reconfigured to be expanded program space. This space is currently a half level up from the fitness room. The existing floor would need to be demo’d and a new floor added at the same level as the fitness room. BTR to review with structural consultant on feasibility, including cost.
- It was also noted that the north entry is rarely used by students and there is a lot of underutilized space that is currently entry and lobby space. There is an opportunity to reconfigure this area for program space.
- ICC would like to see a 3rd option that adds a small addition to the west for entry and leaves the wrestling gym intact for program space. It was discussed that the fitness and weight rooms could relocate here.
- ICC would like Concessions to be located on the 1st floor in all options.

Backes
- ICC feels strongly that the ramp from the 1st to 2nd floor needs to be demolished as part of this remodel and an elevator added.
- It is important to keep at least one large meeting room in Backes- there is a meeting room on the lower level that seats 60 people.
- The bookstore may be relocated to Davies to be co-located with the student union project.

Davies
- ICC agreed that the music room and Engineering concepts lab should be taken offline and not be used for student space due to lack of accessibility.
- Engineering Concept lab can be relocated to another building on campus.
- ICC discussed the opportunity to add program that expands/ supports the student union predesign.
 - Consider locating the bookstore and outdoor equipment rental to the Northeast corner (current art room).
 - Consider adding an office for Veteran services & student government on the first floor.
- ICC liked the idea to move all nursing spaces to the 2nd floor- consider relocating the nursing offices to the 2nd floor as well.
General Comments

- Should Facilities relocate to Davies and use “offline spaces”? Facilities needs an accessible office and shop/ workroom. Shop requires spaces that can get deliveries via forklift.
- Phasing
 - Admin building can be used as swing space
 - Backes- need to maintain access to one-stop services
 - Davies/ Mullins can be taken offline and temp locations established.
- Include fire suppression as part of project scope
- Coordinate construction extents of Davies with student union project.
MEETING MINUTES

Rightsizing and HVAC Renovations Predesign
Itasca Community College
BTR Commission No. 1846

From: Jessica Kraft AIA
Date: July 26, 2018

There was a go to meeting with project stakeholders to review 50% programming diagrams for the site and buildings. DF & BTR presented design ideas and ICC provided initial reactions/comments.

Site
- Not desirable to circulate around the backside of the property, adjacent to UM Agriculture- if primary drive is at perimeter of campus, can it be 2-way?
- Existing monument requires maintenance, so it can be relocated as part of landscape design.
- Node between Wegner & Mullins is new idea- like the idea of creating a focal point, currently this area is a loading zone and side of Mullins is a blank brick wall.

Davies
- IT storage (on 2nd level, adjacent to theater) does not need to remain and is available SF, Project team to determine best use for space, possible use includes mechanical room.
- Nursing offices can be on 1st or 2nd level
- Proposed art studio appears to meet needs
- ITV rooms, location in building is not critical, however (2) remains must remain to support campus programs

Mullins
- Wrestling room size- ICC to determine ideal size required to meet program needs
- An improved arrival point is important.
- ICC liked moving the public restrooms downstairs- other schools have had issues with the public using the team locker room restrooms; Like the idea of keeping public and athletes separate
- Like co-locating fitness and weights

Backes
- Discussion on if a small meeting room belongs at the front of the building- some felt it was appropriate while, others did not- further discussion needed.
- Like the idea of moving the one stop desk to align with entry door, however, the connection between the desk and supporting offices is important to maintain. The desk does not want to be too remote from the offices, as the staff works closely together.
- When admin functions relocate to Backes, meeting rooms are important to add/ maintain.
- Consider infilling enclosed rooms with ceilings within the central volume of space at Backes.